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Abstract 

 

 

Safety is an emerging tasks in the field of Self-driving Cars that includes Perception, 

Planning and Decision Making fields to improve the autonomy in all driving conditions 

especially in the urban driving where the cars shares the environment with other vehicles and 

pedestrians. Several research activities has been done and  some promising results were 

achieved. 
 

In this master thesis, we have focused on Trajectory planning and Execution task that 

enables our Amesim Car to overtake safely around predefined environment attempting to 

reduce the error between the planning and execution. A kinodynamic motion planner like-

driver was developed to mimic the human driver actions and to provide us with an executable 

path.  

In addition, An optimal trajectory controller was designed to stabilize the vehicle and 

track perfectly the reference under system constraints. A simple and complete model of  

Amesim car was identified to be used in both path planning and controller design.  

 

Finally, a co-simulation is carried for different scenarios: double lane change test and 

racing track with different control schemes 
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Chapter 1 

 

 

Introduction 

 

 

1.1 Motivation  
 

 

By 2013, Self-driving Cars or fully Autonomous cars have gone from science fiction 

to reality, where many companies start working on their own self-driving car technologies 

but the path to self-driving vehicles has taken longer than that.  

 

Just after the birth of the cars in 1925, inventors start thinking to make the 

vehicle autonomous. Computer-Controller car essay was published in 1968 by John 

McCarthy, where the author introduced the concept of “automatic chauffeur,” that 

is capable of navigating in a public road via a visual input [1] .  This idea paved to 

Discmans Ernst and his team in 1980 to  developed an automatic visual motion 

control vehicle guidance with artificial intelligence ( AI ) to navigate along highways 

in high speeds [2] [3]. 

 

In last three decades , an increasing  effort from both academia and industry 

has been done toward Self driving cars due to the technological advancement in 

Sensing and Computational areas together with social benefit ( human negligence 

and traffic fatalities …) where Self-Driving cars contribute effectively in reducing 

the human causes of  vehicle accident and better transit management in highways, 

parking and intersections.  

 

The famous project NAVLAB by  CMU demonstrated a further advances in 

perception capability and environment understanding by Pomerleau [4]; where the 

author  trained an adaptive visual module using artificial neural network to classify 
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images into “drivable road” and “non-drivable road” regions as the task of defining  

the road is not easy in some conditions ( surface material, lighting, ...).  

 

First autonomous driving competitions have been held by DARPA (Defense 

Advanced Research Projects Agency) in 2004, to navigate 142 miles through the 

Mojave Desert within as quick as possible in limited time. Since then; DARPA spurs 

the development and  technologies needed to create the first fully autonomous car. 

DARPA URBAN challenge held in  2007 demonstrates the possibility to drive fully 

autonomous in city Traffics [5].  In the same period; self-parking systems start to get 

attention toward developing an automatic parallel parking assistance system. 

 

In 2009, google lunches her Waymo’s self-driving car project and after 5 years 

of testing  and data collection they have revealed their first fully autonomous car 

without steering wheel, throttle or brake pedal [6];   

 

Sadly, the first autonomous car accident occurs in USA where  Tesla’s 

Autopilot self- fails to activate emergency brake at the right moment  an hits the 

front trailer. The second crash was in last march 2018, where an Self Driving Uber 

car crashes a pedestrian woman even though the perceiving system was able to detect 

her 6 seconds before and no action was taken. These two incidents  renewed a debate 

about safety level of self-driving cars . 

 

The cars driving systems has jumped from human driving level to semi-

autonomous level  then to fully autonomous where five (5) different levels of driving  

automation can be distinguished: 

- Level Zero (0):  Zero autonomy; the driver performs all driving tasks. 

- Level One (1) : Driver Assistance; the vehicle is still controlled by the 

driver, with some driving assist in accelerating and braking.  

- Level Two (2) : Partial Automation; now the vehicle assists the 

acceleration and steering, but the driver still can disengage these actions in 

critical situations. 
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- Level Three (3) : Conditional Automation; the vehicle monitor the 

environment based on sensors reading and controls itself under certain 

conditions where the driver still can disengage the vehicle decision when 

it is needed . 

- Level Four (4) :  High Automation; The vehicle is capable of autonomously 

driving  under certain conditions like Lane change and some  safety 

priorities if the driver fails to make a right decision. 

- Level Five (5) : Full Automation; The vehicle is capable of performing all 

driving modes under all conditions.  

In this thesis, we focus on the control and motion planning aspects that falls 

on the third ( 3 ) autonomy level assuming that we have complete information about 

the vehicle surrounding.  

 

1.2 Scope 

The 3rd autonomy level of self-driving cars includes two main modules (1) 

Perception module, that enables the car to localize its self and understand its 

surrounding based on onboard sensors LIDARs and cameras, and a (2) Decision 

Making module, that defines the behavior of the car depending on the collected data 

from the perception module where the most important driving behaviors are (a) lane 

change, (b) lane following (c) valet parking and (d) obeying traffic laws ( priorities 

and traffic light ).  

Once the motion specifications is defined, a motion planning algorithm  is 

needed to navigate in the environment to determine a feasible trajectory then a 

feedback control system  determines the appropriate control inputs to correct the 

trajectory following error to increase the overall safety of the system. In Figure 1. 1; 

block diagram shows the hierarchy levels of the Decision Making Module.  
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Figure 1. 1: Hierarchy of decision-making processes, motion planning and feedback control 

 
 

1.3 State of the art  

 

Different motion planning  algorithms have been proposed for Self-Driving  

cars to compute a safer and feasible trajectory from initial to a goal  configuration,  

where they have been initially developed for mobile robots applications .  

 

graph-search approaches are well known path planning methods  that perform 

a global search strategy in a discretized graphical space to find the shortest drivable 

path in roadmap. Dijkstra Algorithm [7] has been used as  local mission planner to 

find new sequence of waypoints to adapt with traffic conditions. Dijkstra algorithm 

is considered as vast and slow path planner, for better searching performance; A* 

Algorithm was introduced  with heuristic function which gives priority to nodes that 

are supposed to be better than others. In autonomous driving, The A* was used 

mainly in parallel parking application with Voronoj based cost function as in [8]. 

The main drawback of  A* is that the resulting discreet path cannot be executed by 

the vehicle, a continuous version of A* or hybrid A* was introduced in [9]  as part 

of DARPA challenge for parking lots and also for specific maneuvers like hard turn 

left ( U-turns ) where the vehicle is represented by its location, orientation and 

Control

Steering, Throttle and Braking

Motion Planning 

Feasible Optimal 
Path

Trajectory 
Generation

Decision Making

Lane Change/ Following
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motion direction (forward/backward), the key element in hybrid A* is to find the 

heuristic rules. 

Graph search algorithms are appropriate whenever a map is available and 

roadmap is predetermined, unfortunately; in autonomous driving, the use of graph 

search algorithms is limited only on parking application and route planner. This 

explains the popularity of sampling-based motion planner in self-driving cars. These 

methods explore the reachability by randomly sample in high dimensional state 

space configuration under constrains. 

 

In [10], the authors introduces a suboptimal versions of the Probabilistic 

Roadmaps (PRM) and Rapidly-exploring Random Trees (RRT). The PRM approach 

is quite simple and general where each time a new sample node is determined in free 

space and connected to its neighboring  with straight line (edge)  as described in 

[11]. 

 

Rapidly-Exploring Random Tree (RRT) is achieved by picking a random 

sample from the free configuration space and extending the tree toward it [12]. The 

algorithm is fast and suitable for online planning however there are no guarantees 

that the resulting path is exactable (no continuous curvature) [13] . 

 

In  [14] RRT* was introduced, the authors address this problem and they have 

integrated an exact steering procedures within standard RRT to almost  ensure the 

possibility of the path execution  compared to the RRT. 

 

In order to execute the generated trajectory;  a feedback control system is 

required to stabilize the vehicle and correct the tracking errors due to the vehicle 

model uncertainties and other external disturbances (slipper road…).  

 

For low speeds application; a simple kinematic model of the vehicle can be 

used to design controller where different control schemes have been deployed: 

Proportional Integral Derivative (PID) [15], feedback linearization [16] and Model 

Predictive controllers [17], However in high speeds and hard maneuvers; a full 

dynamic model of the vehicle is used to design stable and robust controller where in 

[18],and  [19] the authors designed full nonlinear model predictive controller based 
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on vehicle dynamics and tire model which shows better tracking performance 

compared to [17]. a linear MPC was also discussed  in [20] less computationally 

expensive and  it shows a satisfactory trajectory tracking. The paper [21] presents a 

feedback-feedforward control scheme; it maintains the vehicle stability and 

improves  the tracking performance  by reducing  lateral deviation. A perfect 

tracking performance has been achieved by MPC and this explains the growing 

attention in automotive industry in last past year. 

 

1.4 Thesis  Structure  
 

This master thesis text is structured as follows: 

 

- In Chapter 2, the simulation platform is as the software used  to implements 

and test the control and planning algorithms 

 

- In Chapter 3, the vehicle model is derived and parameter identification is 

performed. 

 

- In Chapter 4, a motion planner algorithm is describer and instigated for 

lane change scenario. 

 

- In Chapter 5, Simulation result for different control approaches. 

 

- In Chapter 6, a conclusion and future work are given. 
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Chapter 2 

 

 

Simulation Platform  

 

 

Siemens Industry Software (SISW) is a business unit of Siemens Digital 

Factory Division. The company provides software, services and systems in the areas 

of managing the product lifecycle and management of industrial operations. SISW 

works collaboratively with clients to offer industrial software solutions that help 

companies worldwide to achieve a sustainable competitive advantage by realizing, 

making real their important innovations. 

 

2.1 Simulation with LMS Imagine.Lab Amesim 
 

LMS Imagine.Lab Amesim software in Siemens Industry Software NV is a 

Multiphysics simulation platform that provides libraries of different physical 

domain, such as mechanical, electromechanical and powertrain.  

 

In this project, it will be used to simulate a vehicle and its dynamic for the 

purposes of testing ADAS control algorithms. By connecting blocks, a complex and 

realistic model can easily be built for simulations. Furthermore, a very detailed sub-

model of single components can be made. 

 

Amesim car is a high fidelity with 15 degree of freedoms ( 15DOf ), the model 

that includes tire and suspension dynamics with more than 72 state variables which 

make her pretty close to the real cars. Hence, it is very useful to test and validate the 

planning and control approaches. The car is illustrated in Figure 2. 1  and more 

details about the car can be found in [22]. 
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Figure 2. 1:  Amesim 15 DOF dynamic Model 

  

2.2 Matlab/Simulink-Amesim  Co-simulation  
 

In this project, we are going to use a co-simulation between AMEsim software 

that contains the car dynamics and Matlab/Simulink. mainly, the control system and  

motion planning algorithm are developed in Matlab and then a real time simulation 

in performed in Simulink  
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Chapter 3 

 

 

Vehicle Model 

 

 

To Successfully design a controller,  a mathematical model which represents 

the 15Dof Amesim Car has to be derived and  matches enough the behavior of  the 

Amesim car  with less expensive computations to reduce the time it takes to solve 

the optimization problem.  

 

The bicycle model; most used model; is adopted in our work to model 

Amesim Car; it includes two main parts: (1) Mechanical Model and (2) Tire Model. 

It simplifies the model geometrically to two wheels front and rear wheel at the center 

axis under symmetrical assumption.  

 

The next step, we are going to derive the bicycle model of the Amesim car 

and show the resulting analysis. 

 

3.1 Bicycle model 

 

The used Amesim Car is Front Wheel Drive (FWD) where only the front 

wheels are actuated in the longitudinal direction. In the other hand;  the back wheels 

are assumed to roll freely.  we represent the engine actuation on the front wheels as 

longitudinal forces. The Car changes its orientation with front wheel steering input 

only. 

 

By neglecting the car Torsion (normal tire load 𝐹𝑧𝑓
, 𝐹𝑧𝑟

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 ) and 

assuming that the car is symmetrical about its Centre of Gravity (CG) axle (Front 

width and Rear width), The plane motion can be described in a body fixed frame 

placed in the Centre of Gravity (CG) including  the lateral (x) and longitudinal (y) 
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dynamics as well the body orientation (yaw) and its rate described in [23] ( see 

Figure 3. 1). 

 

 

 

Figure 3. 1: Bicycle model of car.   

 

𝑉𝑥𝑓
,𝑉𝑦𝑓

 are the longitudinal and lateral velocity vectors for the front wheel in 

the tire frame . 𝑟 represents the yaw rate and 𝛿 is the input steering angle. The forces 

𝐹𝑙 and 𝐹𝑐  are the longitudinal and lateral (cornering) wheel forces. The subscripts { 

r, f } stand for rear and front components. 

 

Using Newton’s and Euler’s law, we can write the dynamics of the car in 

terms of the velocities in body frame : 

 

 𝑚 �̇�𝑥  = 𝐹𝑥𝑓
+  𝐹𝑥𝑟

+  𝑚 𝑟 𝑈𝑦    (3.1) 

 𝑚 �̇�𝑦 = 𝐹𝑦𝑓
+  𝐹𝑦𝑟

−  𝑚 𝑟 𝑈𝑥  (3.2) 

 𝐼𝑧  �̇�   =  𝐿𝑓 𝐹𝑦𝑓
−  𝐿𝑟 𝐹𝑦𝑟

   (3.3) 

 

where, 𝑚 is the vehicle mass, 𝐼𝑧 the vehicle inertia around the z-axis and 𝐿𝑓  

is a distance between Center of Gravity (CG) and the front axle, L𝑟 is the distance 
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between (CG) and the rear axle. 𝐹𝑥, 𝐹𝑦  are the longitudinal and lateral forces acting 

on the car respectively. 𝑈𝑥, 𝑈𝑦  denote longitudinal and lateral velocities of the car, 

respectively.  

 

The position and orientation (kinematics) of the car in absolute initial frame 

can be described using dynamics of the car to get a complete set of equation  of the 

car:  

 

 �̇�  = 𝑈𝑥 cos 𝜓  −  𝑈𝑦 sin 𝜓    (3.4) 

 �̇�  = 𝑈𝑥 sin 𝜓 +  𝑈𝑦 cos 𝜓  (3.5) 

 �̇�  =
𝑈𝑥

L𝑓+ L𝑟 
tan 𝛿  (3.6) 

 

The forces acting (𝐹𝑥, 𝐹𝑦) on the car  can be expressed in terms of the 

longitudinal and lateral tire forces 𝐹𝑙 and 𝐹𝑐  : 

 

 𝐹𝑥 =   𝐹𝑙 cos 𝛿 −  𝐹𝑐  sin 𝛿  (3.7) 

 𝐹𝑦 =   𝐹𝑙 sin 𝛿 +  𝐹𝑐  cos 𝛿  (3.8) 

 

Where the tire forces  𝐹𝑙 and 𝐹𝑐 can be expressed as [23]: 

 

 𝐹𝑙 = 𝑓𝑙(𝛼, 𝑠, 𝜇, 𝐹𝑧)  (3.9) 

 𝐹𝑐 = 𝑓𝑐(𝛼, 𝑠, 𝜇, 𝐹𝑧)  (3.10) 

 

Where 𝛼 is slip angle, 𝑠 is the slip ratio, 𝜇  the friction coefficient for the road 

and 𝐹𝑧  is the vertical tire load acting on the wheels. The tire forces are highly 

nonlinear and under the following assumptions are simplified to a simple nonlinear 

equations: 

 

 Constant nominal loads on the front and rear wheels 𝐹𝑧𝑓
, 𝐹𝑧𝑟

 . 

 s constant satisfying  𝑣 = 𝑅 𝜔 . ( 𝑣 body velocity,  𝜔 

wheel velocity 𝑅 wheel radius ). 

 Neglect the friction coefficient which is considered as external 

disturbance. 
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These simple nonlinear equations are calculated using Pacejka Magic Formula 

[24]. The slip angle of the front and rear wheels is given by:  

 

 𝛼𝑓 = − arctan( 
𝑟 𝐿𝑓+ 𝑈𝑦

𝑈𝑥
 ) +  𝛿  (3.11) 

 𝛼𝑟 = arctan( 
𝑟 𝐿𝑟− 𝑈𝑦

𝑈𝑥
 )  (3.12) 

 

Considering again the constant slip ratio      𝑣 = 𝑅 𝜔  =>    𝑠 = 0 .  the 

longitudinal tire forces 𝐹𝑙𝑓,𝑟
 in equations (3.9 – 3.10)  are assumed also to be zero 

since they are proportional to the slip ratio. Thus The forces acting on the car (𝐹𝑥, 

𝐹𝑦)  can be expressed in terms of the lateral tire forces 𝐹𝑐 only. 

 

3.2  Magic Formula 

 

The magic formula 𝑓𝑐 is an empirical formula used to calculate the tire forces,  

the trigonometric form of the magic formula is given as (Amesim Tire library [22]): 

 

 𝑓𝑐 = 𝒟 sin  ( 𝒞 artan ( ℬ σ )) + 𝒮𝑣  (3.13) 

 σ = ( 1 − ℰ ) ∗ ( α + 𝒮ℎ  )  + (
ℰ

ℬ
) artan ( ℬ (α + 𝒮ℎ))  (3.14) 

 

 sℬ the stiffness factor. 

 𝒞 the shape factor. 

 𝒟 the peak factor. 

 ℰ the curvature factor. 

 𝒮ℎ the horizontal shift. 

 𝒮𝑣 the vertical shift. 

 

In the Amesim car, a complex magic formula is used to calculate the Tire 

forces,  where the magic formula coefficients are in function of the nominal Tire 

force 𝐹𝑧, also nominal Tire force is not constant and changes in function of the input 

steering angle 𝛿 and the longitudinal and lateral velocities (𝑉𝑥𝑓
,𝑉𝑦𝑓

) producing a pitch 

angle.  
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Solving the optimization problem that includes many explicit algebraic and 

differential equations  will be time consuming, if not impossible. Thus a simplified 

common Magic Formula will be used instead and experimental identification will 

be performed to describe the lateral tire forces that matches the ones of the real car: 

 

 𝑓𝑐𝑖
= 𝐹𝑧𝑖

 D𝑖 sin  ( C𝑖 artan ( B𝑖  α𝑖  ))        𝑖: {𝑓, 𝑟}  (3.15) 

 

The simplified formula uses only the slip angle α to calculate the cornering 

forces of the front and rear wheels, The nominal forces 𝐹𝑧𝑓
, 𝐹𝑧𝑟

 are  given by: 

 

 𝐹𝑧𝑓
=

𝑚 𝑔 𝐿𝑟

(𝐿𝑓+𝐿𝑟)
  (3.16) 

 𝐹𝑧𝑟
=

𝑚 𝑔 𝐿𝑓

(𝐿𝑓+𝐿𝑟)
  (3.17) 

 

The parameters B𝑖 , C𝑖 and D𝑖 will identified experimentally and the Figure 3. 

2 shows the lateral forces with different B values.  

 

 

 

Figure 3. 2: Lateral tire force with different Pacejka B values 
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3.3  External forces 

 

The Amesim Car; as any car; is also affected by different external forces, 

mainly the rolling resistance force 𝐹𝑟𝑒𝑠 and  the drag force 𝐹𝑑𝑟𝑎𝑔. By definition the 

rolling resistance force is the force resisting the motion when a wheels (vehicle) rolls 

on a surface and it can be expressed as: 

 

 𝐹𝑟𝑒𝑠 = 𝐷𝑟𝑒𝑠 𝑚 𝑔 cos (𝜃)  (3.18) 

 

where 𝐷𝑟𝑒𝑠  is the roll resistance coefficient and  𝜃 is the angle between the 

road and the horizontal. For a plane motion in flat surface 𝜃 = 0 . the drag force is  

aerodynamic force that opposes the vehicle’s motion through the air and according 

to Rajamani  [25]is given by : 

 

 𝐹𝑑𝑟𝑎𝑔 =  
1

2
 𝜌  𝐴𝐹 𝐶𝐷 ( 𝑉𝑥  +  𝑉𝑤𝑖𝑛𝑑  )2  (3.19) 

 

where 𝜌  is the density of air,  𝐶𝐷 is the aerodynamic drag coefficient and 𝐴𝐹  

is approximately 80 % of the total area of the front of the car. 𝑉𝑥 is the longitudinal 

velocity and 𝑉𝑤𝑖𝑛𝑑 the wind velocity,  the wind velocity is not deterministic and 

small compared to the longitudinal velocity, so we consider only the vehicle velocity 

to compute the drag force in our model.  

 

Another important forces and the main one is the input force that makes the 

car accelerate ( throttle) or decelerate ( Brakes ), obviously the two forces has 

different  modeling in acting on the acceleration of the car; so unique linear model 

will be adopted for control design and logic mapping will used to map the 

acceleration into input throttle in case of acceleration or input brake in deceleration 

action:  

 

 𝐹𝑖𝑛 = 𝑇𝑚𝑎𝑥 𝑎  (3.20) 

 

Now, the total force  acting on the car on the longitudinal direction : 

 

 𝐹 =  𝐹𝑖𝑛 +  𝐹𝑑𝑟𝑎𝑔  + 𝐹𝑟𝑒𝑠  (3.21) 
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3.4  Identification 

 

In this section, the magic formula parameters (B C D) will be modeled in 

steady states as follows:  

 

 We have simulated the car 18 times for different speed profiles from 10 

km/h to 100km/h, a PI controller has been used to regulate the speed at 

the desired one. 

 

 For each simulation, A ramp input steering of  0.1 rad/s was introduced 

to the car in 3 phases: from 0 to 𝛿𝑚𝑎𝑥 then from 𝛿𝑚𝑎𝑥 to − 𝛿𝑚𝑎𝑥   and 

then to 0 again.  

 

 The lateral tire forces of the four wheels and the slip angles has been 

recorded (N =17 347 point).  We have combined the lateral force of 

each pairs { f, r} to fit the bicycle model. The collected data are plotted 

in Figure 3. 3. 
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Figure 3. 3: Measured Lateral tire forces in (a) Front and (b) Rear Wheels 

 Using least square identification, the magic formula parameter has been 

identified:  

 

 min
𝐵𝑖 ,𝐶𝑖,𝐷𝑖

∑ |𝐹𝑐𝑖
(𝛼𝑖𝑘) −  �̂�𝑐𝑖

(𝛼𝑖𝑘) |
2𝑁

𝑘=1    

  (3.22) 

 �̂�𝑐𝑖
(𝛼𝑖𝑘) =  𝐹𝑧𝑖 𝐷𝑖 sin( 𝐶𝑖 arctan(𝐵𝑖  𝛼𝑖))    

 𝐵𝑖  ≥ 0 

𝐶𝑖  ≥ 0 

𝐷𝑖  ≥ 0 

 

 

Solving this Least Square problem gives the following results as plotted in 

Figure 3. 4: 

𝐵𝑓= 11.01 𝐶𝑓 =1.569 𝐷𝑓= 1.017 

𝐵𝑟= 50.17 𝐶𝑟 =1.268 𝐷𝑟= 0.6057 
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Figure 3. 4: Fitted magic formula. 

to determine the resistance force 𝐹𝑟𝑒𝑠; we let the car roll freely with different 

initial velocities (10 km/h to 100km/h) and we recorded the longitudinal forces 

applied in all 4 wheels and 𝐷𝑟𝑒𝑠 =  0.001357  .  

 

 

 

Figure 3. 5: Steady states Rolling resistance.  
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Finally, we put the equations together and the bicycle model of the car can 

be written as follows and Table summarize the identified parameters : 

 𝛼𝑓 = − arctan( 
𝑟 𝐿𝑓+ 𝑈𝑦

𝑈𝑥
 ) +  𝛿  

(3.22) 
 𝛼𝑟 = arctan( 

𝑟 𝐿𝑟− 𝑈𝑦

𝑈𝑥
 )  

   

 𝐹𝑐𝑓
= 𝐹𝑧𝑓

 D𝑓 sin  ( C𝑓 artan ( B𝑓 α𝑓 ))   
(3.23) 

 𝐹𝑐𝑟
= 𝐹𝑧𝑟

 D𝑟 sin  ( C𝑟 artan ( B𝑟 α𝑟 ))   

   

 �̇�𝑥  = (
1

𝑚
) ( 𝐹𝑖𝑛 cos 𝛿 −  𝐹𝑑𝑟𝑎𝑔 − 𝐹𝑟𝑒𝑠 − 𝐹𝑐𝑓

 sin 𝛿 +  𝑚 𝑟 𝑈𝑦 )  

(3.24)  �̇�𝑦 = (
1

𝑚
) ( 𝐹𝑖𝑛 sin 𝛿 + 𝐹𝑐𝑓

cos 𝛿 +  𝐹𝑐𝑟
−  𝑚 𝑟 𝑈𝑥 )  

 �̇� = (
1

 𝐼𝑧
) ( 𝐿𝑓 (𝐹𝑐𝑓

cos 𝛿 +  𝐹𝑖𝑛 sin 𝛿 ) −  𝐿𝑟 𝐹𝑐𝑟
)  

   

 �̇�  = 𝑈𝑥 cos 𝜓  −  𝑈𝑦 sin 𝜓  

(3.25)  �̇�  = 𝑈𝑥 sin 𝜓 +  𝑈𝑦 cos 𝜓  

 �̇� = (
𝑈𝑥

L𝑓+ L𝑟 
) tan 𝛿  

 

Table 3. 1: Amesim Car Identified parameters. 

Parameter Value  [ Unit ] 

𝑚 1430 𝑘𝑔 

 𝐼𝑧 1300 𝑘𝑔2 

𝐿𝑓 1.056 𝑚 

𝐿𝑟 1.344  𝑚 

D𝑓 0.6057  

C𝑓 1.569  

B𝑓 11.01  

D𝑟 0.6057  

C𝑟 1.268  

B𝑟 50.17  

𝐷𝑟𝑒𝑠  0.001357    

𝐶𝐷 0.44  

𝑇𝑚𝑎𝑥 3000 𝑁 
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Chapter 4 

 

 

Path planner like driver 

 

 

Safety is one of the critical tasks for self-driving cars in a shared environment 

with other dynamic systems (vehicles, pedestrians,…) which has been tackled 

from different levels. In this part, our main concern is to develop a motion planner 

algorithm to allow the autonomous car to move from initial state configuration to 

a given final state configuration under environmental constraints (pedestrians, 

other cars, road borders …) seen as physical constraints.  

Different algorithms has been investigated to develop a global optimal 

motion planner satisfying the following key properties :  

- The car model: a model, as in control level,  is required in finding a 

safe path, the more the adopted model matches the kinematics and dynamics of 

the car , the more the path is safer and trackable. Different models has been used 

to model the car mainly Car-like robot, Bicycle model…etc. 

- Completeness:  not all path planner algorithm succeed to reach the 

goal configuration within critical urban configuration (parking )  

- Optimality: besides to the dynamic and kinematic constraints, optimal 

motion planners   are enforced to find a path that solve one of the following 

common problem in Self-Driving : short distance, minimum time or minimum 

curvature (smoothness). 

- Time Complexity: finding a path is time consuming and  the main 

challenge is to be able to predict or bound the time required in finding a feasible 

path. 
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In this thesis, our main concern is safety in other wors a precision and 

completeness are having priority in our  choices. To do so; we have used a high 

fidelity model (kinematics + dynamic) in finding path. It ensures that dynamic 

constraints are satisfied whenever it is feasible and trackable  by trajectory 

controller where the tracking error will be comparatively small. To avoid the non-

complete path, searching algorithms can be a best choice for its anytime and 

exploring properties.  

To satisfy the above requirement, Path planner like-driver is developed based 

on Kinodynamic-RRT planning; known also as Trajectory design; for its (a) Rapid 

exploration capabilities, (b) high precision in replacing the standard  space 

configuration by the kinematic and dynamics of the vehicle, and (c) coupling the 

path planning with trajectory generation so no transformation is needed.  

The major now task is to determine the appropriate control inputs set to drive 

the vehicle from its initial states to a final states within an environment (scenario) 

which can be also seen as feasible trajectory finder in  open loop structure 

considering the physical limitations of the control set (maximum steering,  

throttle) . Moreover , any point in the free space has geometrical and dynamical 

configuration. The use of Rapid Exploring Randomized Tree (RRT) moves the 

problem from trying to find optimal path to attempting to get a feasible path that 

is good enough   as long it satisfies all constraints. 

the kinodynamic problem is formulated as follows : 

- 𝒞 denotes the configuration space that describes the vehicle in the road 

(environment) where 𝑞 ∈ 𝒞 represents the geometrical transformation 

applied on vehicle to move from  its initial state. Whereas 𝒳 denotes the 

state space ( car + environment ) in which the state 𝑥 ∈ 𝒳 is defined by 𝑥 ∈

(𝑞, �̇�).  

- The non-holonomic constraints in 𝒳 are expressed in as   �̇� = 𝑓(𝑥, 𝑢) 

where 𝑓 defines the system dynamics and 𝑢 ∈ 𝒰 represents the set of 

admissible control inputs to our vehicle traveling from initial state 𝑥𝑖𝑛𝑡 

toward goal state 𝑥𝑔𝑜𝑎𝑙. 
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- Assuming that a perceiving system is capable to detect and model the road 

with obstacles 𝒞𝑜𝑠𝑏𝑡 (collision) present  in sensors visibility range, we 

consider the neighboring as free collision space 𝒞𝑓𝑟𝑒𝑒 = 𝒞/𝒞𝑜𝑏𝑠𝑡. However 

planning in state space 𝒳 is different,  𝒳𝑓𝑟𝑒𝑒 =  𝒳/𝒳𝑟𝑖𝑐 where 𝒳𝑟𝑖𝑐; 

known as the region of inevitable collision; defines the region where the 

vehicle is in collision with obstacle or in nothing can be done situation. it 

means if  𝑞 ∈ 𝒞𝑜𝑏𝑠𝑡  implies that  𝑥 ∈ 𝒳𝑜𝑏𝑠𝑡 since 𝑥 ∈ (𝑞, �̇�) and 𝒳𝑜𝑏𝑠𝑡 is 

only a subset of 𝒳𝑟𝑖𝑐 ( 𝒳𝑜𝑏𝑠𝑡 ⊆ 𝒳𝑟𝑖𝑐).  The Figure 4. 1 shows different 

configuration and the difference between 𝒳𝑟𝑖𝑐 and 𝒳𝑜𝑏𝑠𝑡 : our car is the 

blue one where the red one in the front seen as obstacle. The front car 

stopped abruptly and now we can see the change of  𝒳𝑟𝑖𝑐 for different initial 

speed profile.  
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Figure 4. 1: Difference between Free State Space 𝒳𝑓𝑟𝑒𝑒 and Configuration Space 𝒞𝑓𝑟𝑒𝑒. 
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- The solution to this problem is to find a set of input 𝑢(𝜏): [0, 𝑇] ∈ 𝒰 which 

results a free collision trajectory sample 𝑥(𝜏): [0, 𝑇]  ∈ 𝒳𝑓𝑟𝑒𝑒 in driving the 

car  from 𝑥𝑖𝑛𝑡 toward goal state 𝑥𝑔𝑜𝑎𝑙 in bounded  sample time 𝑇. We will 

use Amesim car model as high fidelity motion planner and an iterative 

simulation technique will be performed to sample over 𝒳𝑓𝑟𝑒𝑒 .the following 

Algorithm describe the proposed Kinodynamic motion planner over 

specific scenario: 

Algorithm: Kinodynamic Motion planner  

Input: 𝑥𝑖𝑛𝑡, 𝑥𝑔𝑜𝑎𝑙, scenario  

Output: time parametrized Path { τ , u(τ) , x(τ)  } 

1: Repeat  

2:  Define the Map; 

3:  Locate Obstacles in the Map; 

4:  Get Initial States of Vehicle; 

5:  While ( forever ) do 

6:   u = Get Control Input ( scenario ); 

7:   x(τ) = Simulate Amesim Mode ( u, T ); 

8:   If Collision Free( x(τ) ) then 

9:    Break; 

10:   end If 

11:    

12:  end while 

13: Until Scenario is  False 

 

Lane change, lane following, overtaking and others are referred in 

Kinodynamic Motion planner algorithm as scenarios, for each scenario we have 

parametrized logically the control actions {Steer, Brake, Throttle} that should be 

taken to perform the task set by the decision making process.   A randomized 
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sampling process is used to set numerically  the  logical control action, for example; 

the logical action in overtaking the front car is to steer to the left and the numerical 

value that defines how much should I steer is set randomly following a distribution 

function  𝑆𝑡𝑒𝑒𝑟𝑙𝑒𝑓𝑡(𝑧) = 𝐹(𝑍 ≤  𝑧). 

Therefore, Rapidly Exploring Random Trees (RRT) is used to handle the 

randomized sampling process within Kinodynamic Motion Planner as quick as 

possible and uniform structure. 

Algorithm: RRT Algorithm  

Input: 𝑥𝑖𝑛𝑡 

Output:  Status  

1: 𝑉 ← { 𝑥𝑖𝑛𝑡 } ; 𝐸 ← { ∅ }; 𝐷 ← { ∅ };  𝑖 =  0; 

2: While i < max_iterations do 

3:  𝐺 ← { 𝑉, 𝐸 } 

4:  𝑥𝑟𝑎𝑛𝑑 ← 𝑅𝑎𝑛𝑑𝑜𝑚_𝑆𝑎𝑚𝑝𝑙𝑒 (𝑉); 

5:  (𝑉, 𝐸) ← 𝐸𝑥𝑡𝑒𝑛𝑑(𝐺, 𝐷, 𝑥𝑟𝑎𝑛𝑑) 

6:  If  ( 𝑐ℎ𝑒𝑐𝑘 (𝑉, 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜{𝑔𝑜𝑎𝑙}) == 𝑇𝑟𝑢𝑒  ) then 

7:   Status = Success; 

8:   Break; 

9:  end if  

10:  i=i+1 

11: end While 

 

As any RRT; a graph 𝐺 is created of nodes denoted  𝑉 (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠) that stores 

the final states of the car  where the control inputs sequence  to travel from initial 

node (parent) to current node (child) is stored in the edges 𝐸. 𝐷 denotes the Deleted 

nodes set that contains all nodes that are in collision to avoid repetition. 
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 The Extend function enables the tree to grow where each time we select a 

random node as parent to branch by applying random actions, we add the resulting 

node to 𝑉 and applied actions to  𝐸 if it is in the free collision set. In the case of the 

resulting node is in collision, we discard the applied action and we save the node in 

delete set. 𝑅𝑎𝑛𝑑𝑜𝑚_𝑆𝑎𝑚𝑝𝑙𝑒 function choose randomly a node from 𝑉 and try to 

explore wide range area.   

Algorithm: Extend  

Input: 𝑉, 𝐸, 𝐷, 𝑥𝑟𝑎𝑛𝑑. 

Output: 𝑉, 𝐸. 

1: 𝑉′ ← 𝑉; 𝐸′ ← 𝐸; 𝐷′ ← 𝐷 

2: 𝑢𝑟𝑎𝑛𝑑 = Get Control Input ( scenario ); 

3: 𝑥𝑛𝑒𝑤 (𝜏) = Simulate Amesim Model (𝑥𝑟𝑎𝑛𝑑, 𝑢𝑟𝑎𝑛𝑑 , T ); 

4: If collisionFree( 𝑥𝑛𝑒𝑤 (𝜏) ) and 𝑥𝑛𝑒𝑤 (𝜏) ∉ 𝐷  then 

5:  𝑉′ ≔  𝑉′  ∪ { 𝑥𝑛𝑒𝑤 (𝜏)  }  

6:  𝐸′ ≔  𝐸′  ∪ { 𝑢𝑟𝑎𝑛𝑑(𝜏) }  

7: else 

8:  𝐷′ ≔  𝐷′ ∪ { 𝑥𝑛𝑒𝑤 (𝜏)  } 

9: end if 

10: Return 𝐺′ = (𝑉′, 𝐸′) 

 

For lane change scenario in Figure 4. 2; we define two regions current lane 

region (in green) and target lane region (red) and depending on the vehicle position 

the control actions and their occurrence probabilities are defined by logical 

preference (see Table 4. 1).   
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Table 4. 1: Simple driving rules in lane change 

 Current lane (green) Target lane (red) 
S

te
e
r
in

g
 

Hard_Left 0.3 0 

Left 0.5 0 

Straight 0.2 0.2 

Right 0 0.4 

Hard_Right 0 0.4 

A
c
c
e
le

r
a
ti

o
n

 

Throttle 0.2 0.3 

No Action 0.5 0.5 

Brake 0.3 0.2 

 

One action is taken at the time from steering set and another action from 

acceleration set 𝑈 = { Steering, Acceleration } thus we define two random 

variable 𝑃𝑠 for Steering and 𝑃𝑎 for acceleration. If 𝑃𝑠 = 0.6  and 𝑃𝑎 = 0.9 means 

that Left  with  Brake are chosen as control actions. Now, in same way and as 

discussed above;  a numerical value for the selected control actions is set randomly 

following a uniform distribution function between the maximum and minimum 

value of each action. Note that No Action  refer to no input acceleration.  

 
 

 

Target lane 

Current lane 

 
 

 

Figure 4. 2: Lane change rules regions. 
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 Figure 4. 3 describes the general structure of path planner like-driver with 

Amesim Car. 

 

 

 

 

 

 

 

 

 

 

 

- Motion planner block contains: the scenario map and rules of specific 

scenario. 

 

- Amesim Car block: describes the high fidelity model of the car that 

includes the dynamics and tire model. 

 

 

 

 

 

 

 

 

 

 

 

Motion Planner 

 

Amesim Car 

Steering  

Throttle, Brake 

States  

Figure 4. 3: Motion planner Block diagram. 
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Chapter 5 

 

 

Trajectory Control 

 

 

So far we, the path planner enable the vehicle to find a feasible path with high 

precision following a sequence of control inputs. However, driving the car in  open 

loop structure will not be sufficient to track a full path which will introduce an 

accumulative error that drives the car from the reference trajectory. Also, the open 

loop form is too weak against the different disturbances and external forces (strong 

wind, sliding surface,…). In order to track successfully  the resulting trajectory and 

ensure the stability of the vehicle, a robust trajectory controller is required. 

 

Model Predictive Controllers  (MPC), over literature,  have been effectively 

employed in different applications (UAV, ADAS, … ) for their ability to handle 

systems’ dynamics and kinematics constraints, predicate the behavior of the  system 

over a time horizon and optimize the  problem to find the best feasible control 

combination .  In autonomous driving, MPC has been widely used such as in Falcone 

[18]; where the author has compared between the use of the Linear and  nonlinear 

MPC  in terms of computational time in double lane change application, the 

nonlinear MPC depends on the speed profile of the vehicle and very computationally 

expensive  compared to the linear MPC. Nevertheless, the linear MPC uses a 

linearized model which is not accurate compared to nonlinear MPC model. It is 

always tradeoff between accuracy and time complexity.  

 

Due to the technological advancement of embedded computers, we prioritize 

the accuracy over the time complexity in designing trajectory controller, thus a 

nonlinear model predictive controller (NMPC) based on the bicycle model is 

implemented in the next section. 
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5.1  MPC problem Formulation  

     

Model predictive controller is an optimal control approach formulated as 

optimization problem which involves a prediction model, objective function and 

constraints. Usually, MPC is carried out with a receding horizon from  time ( 𝑡𝑘 ) to 

a defined time ( 𝑡𝑛 ) (horizon time) where 𝑁 future output signals are predicted.  

 

The objective function 𝒥 is built based on the predicted states 𝑥(𝑡𝑘), 𝑥(𝑡𝑘 +

𝑇𝑠), … , 𝑥(𝑡𝑛) and control signals 𝑢(𝑡𝑘), 𝑢(𝑡𝑘 + 𝑇𝑠), … , 𝑢(𝑡𝑛) ( sample time 𝑇𝑠 =
𝑡𝑛

𝑁
 

) and optimized with respect these control signals subjected to constraints;  The 

optimized control signals are inputs to the systems. Each sample time, we repeat the 

same process. 

 

The dynamic model used in our MPC is the bicycle described in chapter 3: 

 

 𝑑𝑥(𝑡)

𝑑𝑡
 = 𝑓( 𝑥 (𝑡) , 𝑢(𝑡)  )  (5.1) 

 𝑥(𝑡0) = 𝑥0  (5.2) 

 𝑦(𝑡) = ℎ(  𝑥 (𝑡) , 𝑢(𝑡)  )  (5.3) 

 

where 𝑥 ∈ ℝ𝑛 is the state,  𝑢 ∈ ℝ𝑚 is the input, 𝑦 ∈ ℝ𝑝  𝑡 is the time and 𝑥0 

are the initial conditions.  The functions 𝑓 and ℎ denotes state and output equations 

respectively. Now, for trajectory tracking application, we define the tracking error 

as follows: 

 

 𝑒(𝑡) = 𝑦𝑟𝑒𝑓(𝑡) −  𝑦(𝑡)  (5.4) 

 

For nonlinear model predictive controller (NMPC), both  constraints and 

objective function are defined nonlinear functions and nonlinear program (NLP) is 

used to solve the problem, then the NMPC optimal control problem is formulated 

for a given current state 𝑥𝑘 as follows: 
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 min
𝑢(𝑡)

∫ 𝒥(  𝑢(𝑡), 𝑥(𝑡) )
𝑡𝑛=𝑡+𝑁 𝑇𝑠

𝑡𝑘
 𝑑𝑡 +  𝒥𝑓( 𝑢(𝑡𝑛), 𝑥(𝑡𝑛) )   (5.5) 

 Subject to 𝑑𝑥(𝑡)

𝑑𝑡
 = 𝑓( 𝑥 (𝑡) , 𝑢(𝑡)  )  (5.6) 

 𝑦(𝑡) = ℎ(  𝑥 (𝑡) , 𝑢(𝑡)  )  (5.7) 

 𝑥(𝑡𝑘) =  𝑥𝑘  (5.8) 

 𝑢𝑚𝑖𝑛 ≤  𝑢(𝑡)  ≤  𝑢𝑚𝑎𝑥  (5.9) 

 Other constraints  

 

In order to be able to solve the optimal control problem numerically, a 

transformation is required  to obtain a finite dimensional optimization problem. We 

define two approaches (1) Single shooting and (2) multiple shooting where the later 

split the horizon into subintervals and parametrizes the state and control trajectories 

to be included in optimization problem. This numerical property and implementation 

issue enable the MPC to handle perfectly uncertain and highly nonlinear systems 

[26]. Thus the finite dimensional optimization problem can be rewritten as follows : 

       

 min
𝑞𝑘 ,…𝑞𝑘+𝑁−1

∑ 𝒥𝑖,𝑑( 𝑞𝑖, 𝑥𝑖  )𝑘+𝑁−1
𝑖=𝑘 +  𝒥𝑓,𝑑( 𝑞𝑘+𝑁, 𝑥𝑘+𝑁 )  (5.10) 

 Subject to 

 

 

𝑑𝑥(𝑡)

𝑑𝑡
 = 𝑓( 𝑥 (𝑡) , 𝑢(𝑡)  )  (5.11) 

 𝑦(𝑡) = ℎ(  𝑥 (𝑡) , 𝑢(𝑡)  )  (5.12) 

 𝑥(𝑡𝑘) =  𝑥𝑘  (5.13) 

 𝑢𝑚𝑖𝑛 ≤  𝑢(𝑡)  ≤  𝑢𝑚𝑎𝑥  (5.14) 

 
𝑢(𝑡) = 𝑞𝑖       multiple shooting transformation 

From 𝑡 ∈ < 𝑡𝑘 , … , 𝑡𝑁 > to 𝑖 ∈ < 𝑘, … , 𝑘 + 𝑁 − 1 >  
(5.15) 

  Other constraints  
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Now the cost function is expressed as the sum of functions 𝒥𝑖,𝑑 and terminal 

function 𝒥𝑓,𝑑 which are based on discrete samples of state and input trajectories. 

Similarly, the constraints are considered at sampling time instants. There are several 

methods that  can be used to solve the above optimization problem Interior point (IP) 

methods and Sequential Quadratic Programming SQP. Frequently, SQP method is 

used in solving NMPC optimization problem. 

 

5.2  SQP 

 

Is an iterative method aiming to find optimum solution to nonlinear 

constrained problem, Consider the nonlinear optimization problem: 

 

 min
𝒛

𝑭(𝒛)  (5.16) 

 Subject to 𝑪𝑬(𝒛) = 𝟎  (5.17) 

 𝑪𝑰(𝒛) ≤ 𝟎  (5.18) 

 

With 𝑭 being the objective function,  𝒛  vector of optimization variables, 𝑪𝑬 

and 𝑪𝑰 are the equality and inequality constraints functions respectively. The idea of 

Sequential Quadratic Programming (SQP) is to search for local minima by the 

following advancing approach: 

 

 𝒛(𝒊+𝟏) =  𝒛𝒊 + 𝜶(𝒊) 𝒑(𝒊) (5.19) 

 

 Until it converges to some stopping criterion. 𝜶(𝒊)  is the step length and 𝒑(𝒊) 

is the optimizer variable  or solution step to the local Quadratic Problem (QP). the 

nonlinear objective function is approximated locally by its quadratic approximation 

form  with linearized constraints. In each iteration,  the local QP is recalculated for 

current 𝒛 then the local QP can be rewritten as follows:  
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 min
𝒑

𝑭(𝒑) ≅   𝑭(𝒛) + 𝛁𝑭𝑻(𝒛) 𝒑 +  
1

2
 𝒑𝑻 𝛁𝟐𝑭(𝒛) 𝒑    (5.20) 

 Subject to 𝛁𝑪𝐸
𝑻(𝒛) 𝒑 +  𝑪𝐸(𝒛)  = 0  (5.21) 

 𝛁𝑪𝐼
𝑻(𝒛) 𝒑 +  𝑪𝐼(𝒛)  ≤ 0  (5.22) 

 

  The following algorithm summarizes the SQP approach: 

 

Algorithm: SQP 

Input: 𝑭, 𝑪𝑬, 𝑪𝑰, initial guess. 

Output: 𝒛(𝑖) 

1: Repeat 

2:  Local QP 𝑭(𝒛)  →  𝑭(𝒑) for 𝒛(𝑖) 

3:  Linearize { 𝑪𝐸  , 𝑪𝐼  } for 𝒛(𝑖) 

4:  Evaluate min
𝒑

 𝑭(𝒑(𝑖)) 

5:  Select 𝜶(𝒊) 

6:  
𝒛(𝒊+𝟏) =  𝒛𝒊 + 𝜶(𝒊) 𝒑(𝒊)  

7:  
𝑖 = 𝑖 + 1  

8: Until : stopping criterion met 

 

Among the different objective functions terms used in NMPC, we are 

interested in the additive quadratic form based on  penalty least square. this form is 

straightforward and very efficient in reference trajectory tracking described in (5.4):  

 

𝒥 = ∑ (𝑥𝑟𝑒𝑓,𝑖 − 𝑥𝑖)
𝑇

𝑸𝒊(𝑥𝑟𝑒𝑓,𝑖 − 𝑥𝑖) +  𝑢𝑖
𝑇𝑹𝒊 𝑢𝑖

𝑘+𝑁−1
𝑖=𝑘 + (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁)

𝑇
𝑸𝑵 (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁)   (5.23) 
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  Equation 5.23, Can be re-written in the block diagonal form as follows: 

 

𝒥 = (𝑥𝑟𝑒𝑓 − 𝑥)
𝑇

𝑸 (𝑥𝑟𝑒𝑓 − 𝑥) +  𝑢𝑇𝑹 𝑢 +  (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁)
𝑇

𝑸𝑵 (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁)   (5.24) 

 

Where the 𝑸 is trajectory diagonal penalty (weighting) matrix consist of 

positive semidefinite matrices 𝑸𝒊 of dimension (n), also 𝑹 is control diagonal penalty 

matrix consisting of blocks of 𝑹𝒊 of dimension (m).  

 

The kinodynamic path planner provides us with time parametrized path 

𝑥𝑟𝑒𝑓 =  (𝑈𝑥 𝑈𝑦 𝑟   𝜓 𝑥 𝑦) and the corresponding control inputs 𝑢𝑟𝑒𝑓 =

(𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 𝑏𝑟𝑎𝑘𝑒). From equation 𝒥, our design take only 𝑥𝑟𝑒𝑓 as 

tracking reference and try to find the new optimized control input 𝑢 = (𝛿 𝑎) to the 

vehicle under some control penalties, then NMPC is described as follows: 

 

min
𝑥,𝑢

𝒥 = (𝑥𝑟𝑒𝑓 − 𝑥)
𝑇

𝑸 (𝑥𝑟𝑒𝑓 − 𝑥) +  𝑢𝑇𝑹 𝑢 +  (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁)
𝑇

𝑸𝑵 (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁)   (5.25) 

 Subject to  𝑥𝑘+1  = 𝑓( 𝑥𝑘  , 𝑢𝑘  )  (5.26) 

  𝑢𝑘 ← {
𝛿𝑚𝑖𝑛 ≤  𝛿 ≤  𝛿𝑚𝑎𝑥

𝑎𝑚𝑖𝑛 ≤  𝑎 ≤  𝑎𝑚𝑎𝑥
}  (5.27) 

  𝑥(0) = 𝑥0  (5.28) 

 

The NMPC described above have been implemented in Matlab using ACADO 

Toolkit interface that contains a collection of dynamic optimization algorithms [27].  

C code will be automatically generated to be used in Simulink or Embedded system 

in the future work. 

 

We distinguish three different possible Trajectory control structures: 

 

 Open loop control: 
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Figure 4. 4: Open Loop Control. 

 Feedback Trajectory Control: 

 

 
Figure 4. 5: NMPC feedback Trajectory Controller 

 Feedback + Feedforward Trajectory Control: 

 

 

Figure 4. 6: Combined Trajectory Control. 
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Chapter 6 

 

 

Simulation Result 

  
 

6.1 Double lane change scenario 
 

 

The severe double lane-change maneuver is a dynamic process consisting of 

rapidly driving a vehicle from its initial lane to another lane parallel and returning 

back to the initial lane while avoiding a defined  obstacle and  without exceeding 

lane boundaries. The double lane change scenario ISO 3888-1 was used to evaluate 

the effectiveness of planner and proposed control schemes. The ISO 3888-1 track 

dimensions are mentioned on Table 6. 1 as shown in Figure 6. 1: 

 

 

 

 

Figure 6. 1: ISO 3888-1 Track for double lane change test.  
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Table 6. 1: ISO 3888-1 Track Dimensions  

 

 

 

 

6.2 RRT Motion planner in Double lane Change 
 

 

In his section, we have explored the ISO 3888-1 track using our motion 

planner like driver in two different driving parametrization : 

- Case 1: Only steering command and no Throttle or Brake actions. Then the 

path planner explores the environment using control set defined as 

𝑢: { 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 } and  initial velocity at the starting point. 

 

- Case 2: full command set 𝑢: { 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔, 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒, 𝑏𝑟𝑎𝑘𝑒 }. The idea here is 

to explore the environment with specific constant speed profiles. Simple PI 

controller is used within path planner to regulate the speed at specific speed 

when it is needed. 

 

We define 7 different regions for the whole track as follows: 

- 1 : STARTING.  

- 2 : TURN LEFT. 

- 3 : BACK STEERING RIGHT. 

- 4 : TURN RIGHT. 

- 5 : BACK STEERING LEFT. 

- 6 : STRAIGHT. 

- 7 : FINISH. 
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Figure 6. 2 Double lane change regions parametrizations. 

  

a. Case 1: 

Considering that the car is having initial velocity  𝑈 = 80 𝑘𝑚/ℎ, the path 

planner is executed  to perform the double lane change  with only steering command. 

to do so, we have parametrized the steering actions for each region  as follows: 

Table 6. 2: Double lane change  with steering parametrization only.   

 
Regions  

1 2 3 4 5 6 7 

S
te

e
r
in

g
 

Hard_Left 
0 

0.3 0 

Left 0.6 0.1 0 0.5 

0.3 Straight 1 0.1 0.4 0.1 0.4 

Right 
0 

0.5 0.6 0.1 

Hard_Right 0 0.3 0 

A
c
c
e
le

r
a

ti
o

n
 

Throttle 0 

No Action 1 

Brake 0 
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The path planner successfully explored the track and reached the finish region 

with steering control action. The RRT exploration tree (in blue ) is shown in 

Figure 6. 3 

 

 

 

Figure 6. 3: RRT motion planner exploration with  steering action only. 

The green nodes in figure are the waypoints of the resulting trajectory, 

between each waypoint we apply new control set that takes the car to the next 

waypoint. At the end, the  resulting trajectory is a sum of sub trajectories where 

in Figure 6. 4 are represented with different colors.  

 

 

 

Figure 6. 4: Feasible trajectory with steering only. 

To elaborate more the success of the planning, we draw the Vehicle positions 

in the resulting trajectory (Figure 6. 5). Clearly the car is not in collision with 

road borders. 
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Figure 6. 5: Car position during the planning with steering only . 

  The control sequence applied to enable the car to reach the finish region is 

shown in Figure 6. 6, where no brake or throttle commands were used. 

 

 

 

 

 

 

Figure 6. 6: Planner control actions during the planning.  

b. Case 2:  

 

In the same tack and for the same scenario, we executed our motion planner 

again to explore with possibility of acceleration or decelerating toward the finish 

region, Brake and Throttle appearance  are configured as shown in the following 

Table 6. 3:    
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Table 6. 3: Double lane change with steering and acceleration rules.   

 
Regions  

1 2 3 4 5 6 7 

S
te

e
r
in

g
 

Hard_Left 
0 

0.3 0 

Left 0.6 0.1 0 0.5 

0.3 Straight 1 0.1 0.4 0.1 0.4 

Right 
0 

0.5 0.6 0.1 

Hard_Right 0 0.3 0 

A
c
c
e
le

r
a
ti

o
n

 

Throttle 0.25 0.2 0.3 0.4 

No Action 0.50 0.6 0.6 0.5 

Brake 0.25 0.2 0.1 

 

The motion planner successfully reaches the finish region with connected 

trajectory using complete set of control inputs which increases the number of 

possible combinations then the resulting tree is bigger than the previous one: 

 

 

 

Figure 6. 7: Motion planner exploration. 

The resulting connected trajectory and the vehicle evolution in the free state 

space are shown in Figure 6. 8 and Figure 6. 9: 
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Figure 6. 8: Resulting feasible trajectory. 

 

 

 

Figure 6. 9: Car locations during the planning.  

The input command combination Steering, Throttle and Brake used by the 

planner are shown Figure 6. 10 . 
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Figure 6. 10: Planner control actions during the planning.  

Clearly, it can be seen that only brake command was used to reduce the speed. 

Most of the  acceleration attempts make the car in collision with road borders. 

  

6.3  Nonlinear Model Predictive Controller (NMPC) 

 

In this section, we are going to discuss the performance of the designed  

NMPC for track trajectory purpose. we have used two different trajectories 

generated by Amesim In Circuit Nevers Magny Track in Bourgogne - France 

(Figure 6. 11): 

 

- Constant Speed Trajectory. 

- Variable Speed Trajectory. 

 

  

 

Figure 6. 11: Circuit Nevers Magny Track  
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a. Constant Speed Trajectory: 

 

The velocity of the car is maintained constant 𝑈 = 10 𝑚/𝑠 in the whole track 

staring from an initial position (𝜓 =  −93 𝑑𝑒𝑔, 𝑥 = 29 𝑚 𝑦 = 162.5 𝑚), 

the horizon length N = 40 with sampling time 𝑇𝑠 = 0.001 𝑠, the weighting  

coefficients are set to be:  

 

 The NMPC tracks  perfectly the reference trajectory  where small drift   

about 20 cm appears in hard turns. The reference and result trajectories are plotted 

in Figure 6. 12. 

 

 

 

States 

Penalties 

𝑞𝑈𝑥
 𝑞𝑈𝑦

 𝑞𝑟 𝑞𝜓 𝑞𝑥 𝑞𝑦 Control 

Penalties 

𝑟𝛿 𝑟𝑎 

0.9 0 

 

0.5 

 

10 

 

1 

 

1 

 

0.05 

 

0.01 
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Figure 6. 12: Constant speed positon tracking.  

 The controller also maintains the speed of the car at 10 m/s in most of 

the time by accelerating using throttle and decelerating using brakes.   

 

 

 

 

 

 

 

Figure 6. 13: (a) Constant speed Tracking, (b) Throttle & Brake optimal control inputs.  

 The main challenges is to follow a trajectory orientations the Yaw ( 𝜓 ) 

and the Yaw rate ( r ) to avoid large drifting in hard turns. we would like also to 

avoid oscillations in control inputs especially in the steering which is undesirable in 

driving behavior. Therefore, we have tuned our NMPC to compromise  between the 

two objectives (1) small error and (2) no oscillations in control signals. 
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Figure 6. 14: (a) Orientation tracking with (b) optimal steering command.  

 

b. Variable Speed Trajectory: 

Now, the controller tracks the same trajectory with variable speed ranges from ( 

10 m/s to 30 m/s).  The initial speed of the car is set to be 30 m/s and we start again 

from the same initial position (𝜓 =  −93 𝑑𝑒𝑔, 𝑥 = 29 𝑚 𝑦 = 162.5 𝑚) 

without changing the weighting coefficients and MPC Horizon length:  

 

 The NMPC shows a good performance in  tracking trajectory where slightly 

larger drift about (40 cm)  appears in hard turns especially in higher speed profiles. 

 

States 

Penalties 

𝑞𝑈𝑥
 𝑞𝑈𝑦

 𝑞𝑟 𝑞𝜓 𝑞𝑥 𝑞𝑦  Control 

Penalties 

𝑟𝛿 𝑟𝑎 

0.9 0 
 

0.5 
 

10 
 

1 
 

1 
 

0.05 
 

0.01 
 



53 
 

 

 

 

 

 

 

Figure 6. 15: Variable speed positon tracking. 

  The controller perfectly trackers the desired speed and orientation by finding 

the optimal control inputs Steering Angle, Brake and Throttle as shown in Figure 6. 

17: 
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Figure 6. 16: (a) Variable speed and (b) Orientation Tracking. 

 

 

 

 

 

 

Figure 6. 17: Optimal control Inputs (a) Steering (b) Brake & Throttle. 
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 Our NMPC is developed using the complete model that includes the dynamics 

of the car and tire forces that allow the vehicle to slip while tracking reference 

trajectory. The pervious reference trajectory is good reference to test the 

performance of the controller in slippery track,  the evolution of the tire forces and 

slip angles of the front and rear wheels are shown in Figure 6. 18: 

 

 

 

Figure 6. 18: (a) Lateral tire forces and (b) Slip angles of front and rear wheels. 

 

6.4 Double lane change control schemes 
 

For double lane change application, control trajectory design is quite 

challenging since we would like to meet the following criterion: 

- Safe double lane change with very small error in position and orientation ( 

free Collision ). 

- No oscillation in control inputs ( mainly steering ) 

- Very small time delay and tracks the speed very well. 

To achieve these requirement we will present different control approaches: 
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6.4.1. Open Loop Controller 

 

Since  the resulting trajectory is achieved by applying random combination of 

control inputs in small time durations, it can be also straightforward to use an open 

loop control structure to execute the time parametrized path as described in Figure 4. 

4: Open Loop Control.Figure 4. 4. 

The Figure 6. 19, Figure 6. 20 shows that applying the control inputs in open 

loop structure will give bad results and the car is not following the reference 

trajectory at all since the error is accumulating during the execution between each 

two sub paths.    

 

 

 

 

 

 

Figure 6. 19: Open loop control (a) resulting trajectory (b) car in collision.  
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Figure 6. 20: Open loop orientation deviation.  

 Besides to that, the car is an uncertain systems that suffers from its  

internal parameter variations  as tire model, suspension system… and external 

disturbances ( wind, slippery road …. ). Therefore, the open loop structure is 

replaced by feedback structure 

 

6.4.2. Feedback Controller 

 

For safety requirement, we will use our NMPC with two different tunings 

coefficients and we compare the performance of the two: 

In NMPC (1) there is no difference between the longitudinal and lateral 

quantities 𝑞𝑥 =  𝑞𝑦  and higher control penalty on the steering to avoid the steering 

oscillation . in the other hand in NMPC (2),  our main concern is to avoid collision 

with road borders therefore we have increased the weighting coefficient of lateral 

component and orientation,  and we have also reduced the penalty on the steering.  
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Figure 6. 21: Resulting paths of both MPC s.  

  

 In Figure 6. 21 ,The NMPC (2) tracks better the trajectory since  the 

objective function is very sensitive to the lateral and orientation errors. As 

consequence, In NMPC (2) the car avoid to hit the right borders of road in retuning 

back to the ego line while in NMPC (1) the car is in collision as shown in zoom 

Figure 6. 23.   
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𝑞𝑈𝑦
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Figure 6. 22: Car locations during the tracking.    

  

 In the NMPC (2) introduces small delay compared to NMPC (1), the 

cars of the resulting and reference trajectories  almost overlapped in Figure 6. 22, 

whereas; the larger delay is introduced in NMPC (1). 

N
M

P
C

(1
) 
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Figure 6. 23: (a) Collision (b) No Collision. 

Slightly difference between the two NMPC s in tracking the velocity and 

orientation references as shown in Figure 6. 24, Figure 6. 25. 
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Figure 6. 24: Speed Tracking of both NMPC configurations. 
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Figure 6. 25: Orientation Tracking of both NMPC configurations.  

The NMPC(1) introduces small oscillations at the starter compared to NMPC 

(2) after that it goes fine for both of them.  The throttle and brake control signals 

for both NMPCs are almost the same. 
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Figure 6. 26: Steering Command of both NMPC configurations. 
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Figure 6. 27: Throttle & Brake Commands of both NMPC configurations. 

 

6.4.3. Feedforward + Feedback Controller  

 

In this section, we use the control sequence from the path planner as feedforward 

control inputs as driver and NMPC will play the role of the correction block to keep 

the car in the reference trajectory. 

The performance is acceptable at some level, however still need to be enhanced 

and develop coordination mechanism to have a better control inputs unlike in Figure 

6. 30. A delay is introduced in controller as shown in Figure 6. 28  which is totally 

undesirable.   
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Figure 6. 28: Feedforward + NMPC tracking performance.  

 

 

 

 

 

 

Figure 6. 29: Speed & Orientation tracking performance.  

A very bad steering and acceleration control signals that influence the comfort 

of the vehicle.  
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Figure 6. 30: Combined (a) Steering ,(b) Throttle and Brake of NMPC and Feedforwrd. 
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Conclusion 

 

In this thesis, we have addressed the safety problem in self-driving cars from 

the  planning and control levels individually and combined in double lane change 

scenario. 

 

Due to the technological advancement, we are now able to integrate a more 

complex models as (Amesim or Tire model ) in developing planning algorithms or 

designing  trajectory controllers. In our Path planner; we have parametrized simple 

kinodynamic RRT to mimic the human driving action to ensure the execution of path 

and drive safely, moreover; our path planner like driver combines between the path 

planning and trajectory generation tasks. For instance this path planner is 

parametrized for lane change and double lane change scenarios which are common 

driving behaviors. 

 

In addition to path planning, a trajectory controller was developed to follow 

the generated path and correct the tracking error during the execution. The developed 

NMPC tracks perfectly the generated path in double lane change as well in slippery 

tracks. Feedforward + NMPC is a promising structure that takes the advantage of 

available control signals from the planner and allow the MPC to compensate the 

errors.  The effectiveness of planner and control approach are simulated with high 

fidelity model. 

  

The planner with high fidelity model  is going to be used as trainer to generate 

safe trajectories for critical situations. Improvements can  be done in (1) 

Feedforward + NMPC control approach (2) path planning (online, optimal 

trajectories which  is very challenging and experimentally tested.  
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