

Master thesis

Optimal Control and Planning for
Autonomous Driving

Tarek BOUAMER

Advisors

Dr .Son Tong

September 2018

II

Abstract

Safety is an emerging tasks in the field of Self-driving Cars that includes Perception,

Planning and Decision Making fields to improve the autonomy in all driving conditions

especially in the urban driving where the cars shares the environment with other vehicles and

pedestrians. Several research activities has been done and some promising results were

achieved.

In this master thesis, we have focused on Trajectory planning and Execution task that

enables our Amesim Car to overtake safely around predefined environment attempting to

reduce the error between the planning and execution. A kinodynamic motion planner like-

driver was developed to mimic the human driver actions and to provide us with an executable

path.

In addition, An optimal trajectory controller was designed to stabilize the vehicle and

track perfectly the reference under system constraints. A simple and complete model of

Amesim car was identified to be used in both path planning and controller design.

Finally, a co-simulation is carried for different scenarios: double lane change test and

racing track with different control schemes

III

Acknowledgement

I want to thank Dr. Son Tong for his guidance and giving me the opportunity

to work in this interesting project. I also want to thank members of RTD LMS Siemens

Industry Software for their technical support.

Many thanks to Paris Saclay Univesity, Evry Val d’ Essonne university and Erasmus

for providing me with funding during my master thesis.

I would like to thank my dear professors supervisors insightful comments and

motivation.

Lastly, I want to thank my family who has been supportive and helping me through

my education.

IV

Table of Content

ABSTRACT II

ACKNOWLEDGEMENT III

TABLE OF CONTENT IV

LIST OF FIGURES VI

LIST OF TABLES VIII

INTRODUCTION 9

1.1 Motivation 9

1.2 Scope 11

1.3 State of the art 12

1.4 Thesis Structure 14

SIMULATION PLATFORM 15

2.1 Simulation with LMS Imagine.Lab Amesim 15

2.2 Matlab/Simulink-Amesim Co-simulation 16

VEHICLE MODEL 17

3.1 Bicycle model 17

3.2 Magic Formula 20

3.3 External forces 22

3.4 Identification 23

PATH PLANNER LIKE DRIVER 27

TRAJECTORY CONTROL 35

5.1 MPC problem Formulation 36

V

5.2 SQP 38

SIMULATION RESULT 42

6.1 Double lane change scenario 42

6.2 RRT Motion planner in Double lane Change 43

6.3 Nonlinear Model Predictive Controller (NMPC) 49

6.4 Double lane change control schemes 55
6.4.1. Open Loop Controller 56
6.4.2. Feedback Controller 57
6.4.3. Feedforward + Feedback Controller 62

CONCLUSION 65

BIBLIOGRAPHY 66

VI

List of Figures

Figure 1. 1: Hierarchy of decision-making processes, motion planning and feedback control 12

Figure 2. 1: Amesim 15 DOF dynamic Model... 16

Figure 3. 1: Bicycle model of car. .. 18
Figure 3. 2: Lateral tire force with different Pacejka B values .. 21
Figure 3. 3: Measured Lateral tire forces in (a) Front and (b) Rear Wheels ... 24
Figure 3. 4: Fitted magic formula. .. 25
Figure 3. 5: Steady states Rolling resistance. .. 25

Figure 4. 1: Difference between Free State Space 𝒳𝑓𝑟𝑒𝑒 and Configuration Space 𝒞𝑓𝑟𝑒𝑒. 29
Figure 4. 2: Lane change rules regions. .. 33
Figure 4. 3: Motion planner Block diagram. ... 34
Figure 4. 4: Open Loop Control. .. 41
Figure 4. 5: NMPC feedback Trajectory Controller .. 41
Figure 4. 6: Combined Trajectory Control.. 41

Figure 6. 1: ISO 3888-1 Track for double lane change test. .. 42
Figure 6. 2 Double lane change regions parametrizations. .. 44
Figure 6. 3: RRT motion planner exploration with steering action only. .. 45
Figure 6. 4: Feasible trajectory with steering only. ... 45
Figure 6. 5: Car position during the planning with steering only 46
Figure 6. 6: Planner control actions during the planning. .. 46
Figure 6. 7: Motion planner exploration. .. 47
Figure 6. 8: Resulting feasible trajectory. ... 48
Figure 6. 9: Car locations during the planning. ... 48
Figure 6. 10: Planner control actions during the planning. .. 49
Figure 6. 11: Circuit Nevers Magny Track ... 49
Figure 6. 12: Constant speed positon tracking. ... 51
Figure 6. 13: (a) Constant speed Tracking, (b) Throttle & Brake optimal control inputs.......................... 51
Figure 6. 14: (a) Orientation tracking with (b) optimal steering command. ... 52
Figure 6. 15: Variable speed positon tracking... 53
Figure 6. 16: (a) Variable speed and (b) Orientation Tracking. ... 54
Figure 6. 17: Optimal control Inputs (a) Steering (b) Brake & Throttle. .. 54

file:///C:/Users/hqm3yy/Desktop/thesis.docx%23_Toc522535238

VII

Figure 6. 18: (a) Lateral tire forces and (b) Slip angles of front and rear wheels...................................... 55
Figure 6. 19: Open loop control (a) resulting trajectory (b) car in collision. .. 56
Figure 6. 20: Open loop orientation deviation. ... 57
Figure 6. 21: Resulting paths of both MPC s. ... 58
Figure 6. 22: Car locations during the tracking. .. 59
Figure 6. 23: (a) Collision (b) No Collision. ... 60
Figure 6. 24: Speed Tracking of both NMPC configurations. ... 60
Figure 6. 25: Orientation Tracking of both NMPC configurations. ... 61
Figure 6. 26: Steering Command of both NMPC configurations. .. 61
Figure 6. 27: Throttle & Brake Commands of both NMPC configurations. ... 62
Figure 6. 28: Feedforward + NMPC tracking performance. .. 63
Figure 6. 29: Speed & Orientation tracking performance. ... 63
Figure 6. 30: Combined (a) Steering ,(b) Throttle and Brake of NMPC and Feedforwrd. 64

VIII

List of Tables

Table 3. 1: Amesim Car Identified parameters. .. 26

Table 4. 1: Simple driving rules in lane change .. 33

Table 6. 1: ISO 3888-1 Track Dimensions ... 43
Table 6. 2: Double lane change with steering parametrization only. .. 44
Table 6. 3: Double lane change with steering and acceleration rules. .. 47

9

Chapter 1

Introduction

1.1 Motivation

By 2013, Self-driving Cars or fully Autonomous cars have gone from science fiction

to reality, where many companies start working on their own self-driving car technologies

but the path to self-driving vehicles has taken longer than that.

Just after the birth of the cars in 1925, inventors start thinking to make the

vehicle autonomous. Computer-Controller car essay was published in 1968 by John

McCarthy, where the author introduced the concept of “automatic chauffeur,” that

is capable of navigating in a public road via a visual input [1] . This idea paved to

Discmans Ernst and his team in 1980 to developed an automatic visual motion

control vehicle guidance with artificial intelligence (AI) to navigate along highways

in high speeds [2] [3].

In last three decades , an increasing effort from both academia and industry

has been done toward Self driving cars due to the technological advancement in

Sensing and Computational areas together with social benefit (human negligence

and traffic fatalities …) where Self-Driving cars contribute effectively in reducing

the human causes of vehicle accident and better transit management in highways,

parking and intersections.

The famous project NAVLAB by CMU demonstrated a further advances in

perception capability and environment understanding by Pomerleau [4]; where the

author trained an adaptive visual module using artificial neural network to classify

10

images into “drivable road” and “non-drivable road” regions as the task of defining

the road is not easy in some conditions (surface material, lighting, ...).

First autonomous driving competitions have been held by DARPA (Defense

Advanced Research Projects Agency) in 2004, to navigate 142 miles through the

Mojave Desert within as quick as possible in limited time. Since then; DARPA spurs

the development and technologies needed to create the first fully autonomous car.

DARPA URBAN challenge held in 2007 demonstrates the possibility to drive fully

autonomous in city Traffics [5]. In the same period; self-parking systems start to get

attention toward developing an automatic parallel parking assistance system.

In 2009, google lunches her Waymo’s self-driving car project and after 5 years

of testing and data collection they have revealed their first fully autonomous car

without steering wheel, throttle or brake pedal [6];

Sadly, the first autonomous car accident occurs in USA where Tesla’s

Autopilot self- fails to activate emergency brake at the right moment an hits the

front trailer. The second crash was in last march 2018, where an Self Driving Uber

car crashes a pedestrian woman even though the perceiving system was able to detect

her 6 seconds before and no action was taken. These two incidents renewed a debate

about safety level of self-driving cars .

The cars driving systems has jumped from human driving level to semi-

autonomous level then to fully autonomous where five (5) different levels of driving

automation can be distinguished:

- Level Zero (0): Zero autonomy; the driver performs all driving tasks.

- Level One (1) : Driver Assistance; the vehicle is still controlled by the

driver, with some driving assist in accelerating and braking.

- Level Two (2) : Partial Automation; now the vehicle assists the

acceleration and steering, but the driver still can disengage these actions in

critical situations.

11

- Level Three (3) : Conditional Automation; the vehicle monitor the

environment based on sensors reading and controls itself under certain

conditions where the driver still can disengage the vehicle decision when

it is needed .

- Level Four (4) : High Automation; The vehicle is capable of autonomously

driving under certain conditions like Lane change and some safety

priorities if the driver fails to make a right decision.

- Level Five (5) : Full Automation; The vehicle is capable of performing all

driving modes under all conditions.

In this thesis, we focus on the control and motion planning aspects that falls

on the third (3) autonomy level assuming that we have complete information about

the vehicle surrounding.

1.2 Scope

The 3rd autonomy level of self-driving cars includes two main modules (1)

Perception module, that enables the car to localize its self and understand its

surrounding based on onboard sensors LIDARs and cameras, and a (2) Decision

Making module, that defines the behavior of the car depending on the collected data

from the perception module where the most important driving behaviors are (a) lane

change, (b) lane following (c) valet parking and (d) obeying traffic laws (priorities

and traffic light).

Once the motion specifications is defined, a motion planning algorithm is

needed to navigate in the environment to determine a feasible trajectory then a

feedback control system determines the appropriate control inputs to correct the

trajectory following error to increase the overall safety of the system. In Figure 1. 1;

block diagram shows the hierarchy levels of the Decision Making Module.

12

Figure 1. 1: Hierarchy of decision-making processes, motion planning and feedback control

1.3 State of the art

Different motion planning algorithms have been proposed for Self-Driving

cars to compute a safer and feasible trajectory from initial to a goal configuration,

where they have been initially developed for mobile robots applications .

graph-search approaches are well known path planning methods that perform

a global search strategy in a discretized graphical space to find the shortest drivable

path in roadmap. Dijkstra Algorithm [7] has been used as local mission planner to

find new sequence of waypoints to adapt with traffic conditions. Dijkstra algorithm

is considered as vast and slow path planner, for better searching performance; A*

Algorithm was introduced with heuristic function which gives priority to nodes that

are supposed to be better than others. In autonomous driving, The A* was used

mainly in parallel parking application with Voronoj based cost function as in [8].

The main drawback of A* is that the resulting discreet path cannot be executed by

the vehicle, a continuous version of A* or hybrid A* was introduced in [9] as part

of DARPA challenge for parking lots and also for specific maneuvers like hard turn

left (U-turns) where the vehicle is represented by its location, orientation and

Control

Steering, Throttle and Braking

Motion Planning

Feasible Optimal
Path

Trajectory
Generation

Decision Making

Lane Change/ Following

13

motion direction (forward/backward), the key element in hybrid A* is to find the

heuristic rules.

Graph search algorithms are appropriate whenever a map is available and

roadmap is predetermined, unfortunately; in autonomous driving, the use of graph

search algorithms is limited only on parking application and route planner. This

explains the popularity of sampling-based motion planner in self-driving cars. These

methods explore the reachability by randomly sample in high dimensional state

space configuration under constrains.

In [10], the authors introduces a suboptimal versions of the Probabilistic

Roadmaps (PRM) and Rapidly-exploring Random Trees (RRT). The PRM approach

is quite simple and general where each time a new sample node is determined in free

space and connected to its neighboring with straight line (edge) as described in

[11].

Rapidly-Exploring Random Tree (RRT) is achieved by picking a random

sample from the free configuration space and extending the tree toward it [12]. The

algorithm is fast and suitable for online planning however there are no guarantees

that the resulting path is exactable (no continuous curvature) [13] .

In [14] RRT* was introduced, the authors address this problem and they have

integrated an exact steering procedures within standard RRT to almost ensure the

possibility of the path execution compared to the RRT.

In order to execute the generated trajectory; a feedback control system is

required to stabilize the vehicle and correct the tracking errors due to the vehicle

model uncertainties and other external disturbances (slipper road…).

For low speeds application; a simple kinematic model of the vehicle can be

used to design controller where different control schemes have been deployed:

Proportional Integral Derivative (PID) [15], feedback linearization [16] and Model

Predictive controllers [17], However in high speeds and hard maneuvers; a full

dynamic model of the vehicle is used to design stable and robust controller where in

[18],and [19] the authors designed full nonlinear model predictive controller based

14

on vehicle dynamics and tire model which shows better tracking performance

compared to [17]. a linear MPC was also discussed in [20] less computationally

expensive and it shows a satisfactory trajectory tracking. The paper [21] presents a

feedback-feedforward control scheme; it maintains the vehicle stability and

improves the tracking performance by reducing lateral deviation. A perfect

tracking performance has been achieved by MPC and this explains the growing

attention in automotive industry in last past year.

1.4 Thesis Structure

This master thesis text is structured as follows:

- In Chapter 2, the simulation platform is as the software used to implements

and test the control and planning algorithms

- In Chapter 3, the vehicle model is derived and parameter identification is

performed.

- In Chapter 4, a motion planner algorithm is describer and instigated for

lane change scenario.

- In Chapter 5, Simulation result for different control approaches.

- In Chapter 6, a conclusion and future work are given.

15

Chapter 2

Simulation Platform

Siemens Industry Software (SISW) is a business unit of Siemens Digital

Factory Division. The company provides software, services and systems in the areas

of managing the product lifecycle and management of industrial operations. SISW

works collaboratively with clients to offer industrial software solutions that help

companies worldwide to achieve a sustainable competitive advantage by realizing,

making real their important innovations.

2.1 Simulation with LMS Imagine.Lab Amesim

LMS Imagine.Lab Amesim software in Siemens Industry Software NV is a

Multiphysics simulation platform that provides libraries of different physical

domain, such as mechanical, electromechanical and powertrain.

In this project, it will be used to simulate a vehicle and its dynamic for the

purposes of testing ADAS control algorithms. By connecting blocks, a complex and

realistic model can easily be built for simulations. Furthermore, a very detailed sub-

model of single components can be made.

Amesim car is a high fidelity with 15 degree of freedoms (15DOf), the model

that includes tire and suspension dynamics with more than 72 state variables which

make her pretty close to the real cars. Hence, it is very useful to test and validate the

planning and control approaches. The car is illustrated in Figure 2. 1 and more

details about the car can be found in [22].

16

Figure 2. 1: Amesim 15 DOF dynamic Model

2.2 Matlab/Simulink-Amesim Co-simulation

In this project, we are going to use a co-simulation between AMEsim software

that contains the car dynamics and Matlab/Simulink. mainly, the control system and

motion planning algorithm are developed in Matlab and then a real time simulation

in performed in Simulink

17

Chapter 3

Vehicle Model

To Successfully design a controller, a mathematical model which represents

the 15Dof Amesim Car has to be derived and matches enough the behavior of the

Amesim car with less expensive computations to reduce the time it takes to solve

the optimization problem.

The bicycle model; most used model; is adopted in our work to model

Amesim Car; it includes two main parts: (1) Mechanical Model and (2) Tire Model.

It simplifies the model geometrically to two wheels front and rear wheel at the center

axis under symmetrical assumption.

The next step, we are going to derive the bicycle model of the Amesim car

and show the resulting analysis.

3.1 Bicycle model

The used Amesim Car is Front Wheel Drive (FWD) where only the front

wheels are actuated in the longitudinal direction. In the other hand; the back wheels

are assumed to roll freely. we represent the engine actuation on the front wheels as

longitudinal forces. The Car changes its orientation with front wheel steering input

only.

By neglecting the car Torsion (normal tire load 𝐹𝑧𝑓
, 𝐹𝑧𝑟

= 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡) and

assuming that the car is symmetrical about its Centre of Gravity (CG) axle (Front

width and Rear width), The plane motion can be described in a body fixed frame

placed in the Centre of Gravity (CG) including the lateral (x) and longitudinal (y)

18

dynamics as well the body orientation (yaw) and its rate described in [23] (see

Figure 3. 1).

Figure 3. 1: Bicycle model of car.

𝑉𝑥𝑓
,𝑉𝑦𝑓

 are the longitudinal and lateral velocity vectors for the front wheel in

the tire frame . 𝑟 represents the yaw rate and 𝛿 is the input steering angle. The forces

𝐹𝑙 and 𝐹𝑐 are the longitudinal and lateral (cornering) wheel forces. The subscripts {

r, f } stand for rear and front components.

Using Newton’s and Euler’s law, we can write the dynamics of the car in

terms of the velocities in body frame :

 𝑚 �̇�𝑥 = 𝐹𝑥𝑓
+ 𝐹𝑥𝑟

+ 𝑚 𝑟 𝑈𝑦 (3.1)

 𝑚 �̇�𝑦 = 𝐹𝑦𝑓
+ 𝐹𝑦𝑟

− 𝑚 𝑟 𝑈𝑥 (3.2)

 𝐼𝑧 �̇� = 𝐿𝑓 𝐹𝑦𝑓
− 𝐿𝑟 𝐹𝑦𝑟

 (3.3)

where, 𝑚 is the vehicle mass, 𝐼𝑧 the vehicle inertia around the z-axis and 𝐿𝑓

is a distance between Center of Gravity (CG) and the front axle, L𝑟 is the distance

19

between (CG) and the rear axle. 𝐹𝑥, 𝐹𝑦 are the longitudinal and lateral forces acting

on the car respectively. 𝑈𝑥, 𝑈𝑦 denote longitudinal and lateral velocities of the car,

respectively.

The position and orientation (kinematics) of the car in absolute initial frame

can be described using dynamics of the car to get a complete set of equation of the

car:

 �̇� = 𝑈𝑥 cos 𝜓 − 𝑈𝑦 sin 𝜓 (3.4)

 �̇� = 𝑈𝑥 sin 𝜓 + 𝑈𝑦 cos 𝜓 (3.5)

 �̇� =
𝑈𝑥

L𝑓+ L𝑟
tan 𝛿 (3.6)

The forces acting (𝐹𝑥, 𝐹𝑦) on the car can be expressed in terms of the

longitudinal and lateral tire forces 𝐹𝑙 and 𝐹𝑐 :

 𝐹𝑥 = 𝐹𝑙 cos 𝛿 − 𝐹𝑐 sin 𝛿 (3.7)

 𝐹𝑦 = 𝐹𝑙 sin 𝛿 + 𝐹𝑐 cos 𝛿 (3.8)

Where the tire forces 𝐹𝑙 and 𝐹𝑐 can be expressed as [23]:

 𝐹𝑙 = 𝑓𝑙(𝛼, 𝑠, 𝜇, 𝐹𝑧) (3.9)

 𝐹𝑐 = 𝑓𝑐(𝛼, 𝑠, 𝜇, 𝐹𝑧) (3.10)

Where 𝛼 is slip angle, 𝑠 is the slip ratio, 𝜇 the friction coefficient for the road

and 𝐹𝑧 is the vertical tire load acting on the wheels. The tire forces are highly

nonlinear and under the following assumptions are simplified to a simple nonlinear

equations:

 Constant nominal loads on the front and rear wheels 𝐹𝑧𝑓
, 𝐹𝑧𝑟

 .

 s constant satisfying 𝑣 = 𝑅 𝜔 . (𝑣 body velocity, 𝜔

wheel velocity 𝑅 wheel radius).

 Neglect the friction coefficient which is considered as external

disturbance.

20

These simple nonlinear equations are calculated using Pacejka Magic Formula

[24]. The slip angle of the front and rear wheels is given by:

 𝛼𝑓 = − arctan(
𝑟 𝐿𝑓+ 𝑈𝑦

𝑈𝑥
) + 𝛿 (3.11)

 𝛼𝑟 = arctan(
𝑟 𝐿𝑟− 𝑈𝑦

𝑈𝑥
) (3.12)

Considering again the constant slip ratio 𝑣 = 𝑅 𝜔 => 𝑠 = 0 . the

longitudinal tire forces 𝐹𝑙𝑓,𝑟
 in equations (3.9 – 3.10) are assumed also to be zero

since they are proportional to the slip ratio. Thus The forces acting on the car (𝐹𝑥,

𝐹𝑦) can be expressed in terms of the lateral tire forces 𝐹𝑐 only.

3.2 Magic Formula

The magic formula 𝑓𝑐 is an empirical formula used to calculate the tire forces,

the trigonometric form of the magic formula is given as (Amesim Tire library [22]):

 𝑓𝑐 = 𝒟 sin (𝒞 artan (ℬ σ)) + 𝒮𝑣 (3.13)

 σ = (1 − ℰ) ∗ (α + 𝒮ℎ) + (
ℰ

ℬ
) artan (ℬ (α + 𝒮ℎ)) (3.14)

 sℬ the stiffness factor.

 𝒞 the shape factor.

 𝒟 the peak factor.

 ℰ the curvature factor.

 𝒮ℎ the horizontal shift.

 𝒮𝑣 the vertical shift.

In the Amesim car, a complex magic formula is used to calculate the Tire

forces, where the magic formula coefficients are in function of the nominal Tire

force 𝐹𝑧, also nominal Tire force is not constant and changes in function of the input

steering angle 𝛿 and the longitudinal and lateral velocities (𝑉𝑥𝑓
,𝑉𝑦𝑓

) producing a pitch

angle.

21

Solving the optimization problem that includes many explicit algebraic and

differential equations will be time consuming, if not impossible. Thus a simplified

common Magic Formula will be used instead and experimental identification will

be performed to describe the lateral tire forces that matches the ones of the real car:

 𝑓𝑐𝑖
= 𝐹𝑧𝑖

 D𝑖 sin (C𝑖 artan (B𝑖 α𝑖)) 𝑖: {𝑓, 𝑟} (3.15)

The simplified formula uses only the slip angle α to calculate the cornering

forces of the front and rear wheels, The nominal forces 𝐹𝑧𝑓
, 𝐹𝑧𝑟

 are given by:

 𝐹𝑧𝑓
=

𝑚 𝑔 𝐿𝑟

(𝐿𝑓+𝐿𝑟)
 (3.16)

 𝐹𝑧𝑟
=

𝑚 𝑔 𝐿𝑓

(𝐿𝑓+𝐿𝑟)
 (3.17)

The parameters B𝑖 , C𝑖 and D𝑖 will identified experimentally and the Figure 3.

2 shows the lateral forces with different B values.

Figure 3. 2: Lateral tire force with different Pacejka B values

22

3.3 External forces

The Amesim Car; as any car; is also affected by different external forces,

mainly the rolling resistance force 𝐹𝑟𝑒𝑠 and the drag force 𝐹𝑑𝑟𝑎𝑔. By definition the

rolling resistance force is the force resisting the motion when a wheels (vehicle) rolls

on a surface and it can be expressed as:

 𝐹𝑟𝑒𝑠 = 𝐷𝑟𝑒𝑠 𝑚 𝑔 cos (𝜃) (3.18)

where 𝐷𝑟𝑒𝑠 is the roll resistance coefficient and 𝜃 is the angle between the

road and the horizontal. For a plane motion in flat surface 𝜃 = 0 . the drag force is

aerodynamic force that opposes the vehicle’s motion through the air and according

to Rajamani [25]is given by :

 𝐹𝑑𝑟𝑎𝑔 =
1

2
 𝜌 𝐴𝐹 𝐶𝐷 (𝑉𝑥 + 𝑉𝑤𝑖𝑛𝑑)2 (3.19)

where 𝜌 is the density of air, 𝐶𝐷 is the aerodynamic drag coefficient and 𝐴𝐹

is approximately 80 % of the total area of the front of the car. 𝑉𝑥 is the longitudinal

velocity and 𝑉𝑤𝑖𝑛𝑑 the wind velocity, the wind velocity is not deterministic and

small compared to the longitudinal velocity, so we consider only the vehicle velocity

to compute the drag force in our model.

Another important forces and the main one is the input force that makes the

car accelerate (throttle) or decelerate (Brakes), obviously the two forces has

different modeling in acting on the acceleration of the car; so unique linear model

will be adopted for control design and logic mapping will used to map the

acceleration into input throttle in case of acceleration or input brake in deceleration

action:

 𝐹𝑖𝑛 = 𝑇𝑚𝑎𝑥 𝑎 (3.20)

Now, the total force acting on the car on the longitudinal direction :

 𝐹 = 𝐹𝑖𝑛 + 𝐹𝑑𝑟𝑎𝑔 + 𝐹𝑟𝑒𝑠 (3.21)

23

3.4 Identification

In this section, the magic formula parameters (B C D) will be modeled in

steady states as follows:

 We have simulated the car 18 times for different speed profiles from 10

km/h to 100km/h, a PI controller has been used to regulate the speed at

the desired one.

 For each simulation, A ramp input steering of 0.1 rad/s was introduced

to the car in 3 phases: from 0 to 𝛿𝑚𝑎𝑥 then from 𝛿𝑚𝑎𝑥 to − 𝛿𝑚𝑎𝑥 and

then to 0 again.

 The lateral tire forces of the four wheels and the slip angles has been

recorded (N =17 347 point). We have combined the lateral force of

each pairs { f, r} to fit the bicycle model. The collected data are plotted

in Figure 3. 3.

24

Figure 3. 3: Measured Lateral tire forces in (a) Front and (b) Rear Wheels

 Using least square identification, the magic formula parameter has been

identified:

 min
𝐵𝑖 ,𝐶𝑖,𝐷𝑖

∑ |𝐹𝑐𝑖
(𝛼𝑖𝑘) − �̂�𝑐𝑖

(𝛼𝑖𝑘) |
2𝑁

𝑘=1

 (3.22)

 �̂�𝑐𝑖
(𝛼𝑖𝑘) = 𝐹𝑧𝑖 𝐷𝑖 sin(𝐶𝑖 arctan(𝐵𝑖 𝛼𝑖))

 𝐵𝑖 ≥ 0

𝐶𝑖 ≥ 0

𝐷𝑖 ≥ 0

Solving this Least Square problem gives the following results as plotted in

Figure 3. 4:

𝐵𝑓= 11.01 𝐶𝑓 =1.569 𝐷𝑓= 1.017

𝐵𝑟= 50.17 𝐶𝑟 =1.268 𝐷𝑟= 0.6057

25

Figure 3. 4: Fitted magic formula.

to determine the resistance force 𝐹𝑟𝑒𝑠; we let the car roll freely with different

initial velocities (10 km/h to 100km/h) and we recorded the longitudinal forces

applied in all 4 wheels and 𝐷𝑟𝑒𝑠 = 0.001357 .

Figure 3. 5: Steady states Rolling resistance.

26

Finally, we put the equations together and the bicycle model of the car can

be written as follows and Table summarize the identified parameters :

 𝛼𝑓 = − arctan(
𝑟 𝐿𝑓+ 𝑈𝑦

𝑈𝑥
) + 𝛿

(3.22)
 𝛼𝑟 = arctan(

𝑟 𝐿𝑟− 𝑈𝑦

𝑈𝑥
)

 𝐹𝑐𝑓
= 𝐹𝑧𝑓

 D𝑓 sin (C𝑓 artan (B𝑓 α𝑓))
(3.23)

 𝐹𝑐𝑟
= 𝐹𝑧𝑟

 D𝑟 sin (C𝑟 artan (B𝑟 α𝑟))

 �̇�𝑥 = (
1

𝑚
) (𝐹𝑖𝑛 cos 𝛿 − 𝐹𝑑𝑟𝑎𝑔 − 𝐹𝑟𝑒𝑠 − 𝐹𝑐𝑓

 sin 𝛿 + 𝑚 𝑟 𝑈𝑦)

(3.24) �̇�𝑦 = (
1

𝑚
) (𝐹𝑖𝑛 sin 𝛿 + 𝐹𝑐𝑓

cos 𝛿 + 𝐹𝑐𝑟
− 𝑚 𝑟 𝑈𝑥)

 �̇� = (
1

 𝐼𝑧
) (𝐿𝑓 (𝐹𝑐𝑓

cos 𝛿 + 𝐹𝑖𝑛 sin 𝛿) − 𝐿𝑟 𝐹𝑐𝑟
)

 �̇� = 𝑈𝑥 cos 𝜓 − 𝑈𝑦 sin 𝜓

(3.25) �̇� = 𝑈𝑥 sin 𝜓 + 𝑈𝑦 cos 𝜓

 �̇� = (
𝑈𝑥

L𝑓+ L𝑟
) tan 𝛿

Table 3. 1: Amesim Car Identified parameters.

Parameter Value [Unit]

𝑚 1430 𝑘𝑔

 𝐼𝑧 1300 𝑘𝑔2

𝐿𝑓 1.056 𝑚

𝐿𝑟 1.344 𝑚

D𝑓 0.6057

C𝑓 1.569

B𝑓 11.01

D𝑟 0.6057

C𝑟 1.268

B𝑟 50.17

𝐷𝑟𝑒𝑠 0.001357

𝐶𝐷 0.44

𝑇𝑚𝑎𝑥 3000 𝑁

27

Chapter 4

Path planner like driver

Safety is one of the critical tasks for self-driving cars in a shared environment

with other dynamic systems (vehicles, pedestrians,…) which has been tackled

from different levels. In this part, our main concern is to develop a motion planner

algorithm to allow the autonomous car to move from initial state configuration to

a given final state configuration under environmental constraints (pedestrians,

other cars, road borders …) seen as physical constraints.

Different algorithms has been investigated to develop a global optimal

motion planner satisfying the following key properties :

- The car model: a model, as in control level, is required in finding a

safe path, the more the adopted model matches the kinematics and dynamics of

the car , the more the path is safer and trackable. Different models has been used

to model the car mainly Car-like robot, Bicycle model…etc.

- Completeness: not all path planner algorithm succeed to reach the

goal configuration within critical urban configuration (parking)

- Optimality: besides to the dynamic and kinematic constraints, optimal

motion planners are enforced to find a path that solve one of the following

common problem in Self-Driving : short distance, minimum time or minimum

curvature (smoothness).

- Time Complexity: finding a path is time consuming and the main

challenge is to be able to predict or bound the time required in finding a feasible

path.

28

In this thesis, our main concern is safety in other wors a precision and

completeness are having priority in our choices. To do so; we have used a high

fidelity model (kinematics + dynamic) in finding path. It ensures that dynamic

constraints are satisfied whenever it is feasible and trackable by trajectory

controller where the tracking error will be comparatively small. To avoid the non-

complete path, searching algorithms can be a best choice for its anytime and

exploring properties.

To satisfy the above requirement, Path planner like-driver is developed based

on Kinodynamic-RRT planning; known also as Trajectory design; for its (a) Rapid

exploration capabilities, (b) high precision in replacing the standard space

configuration by the kinematic and dynamics of the vehicle, and (c) coupling the

path planning with trajectory generation so no transformation is needed.

The major now task is to determine the appropriate control inputs set to drive

the vehicle from its initial states to a final states within an environment (scenario)

which can be also seen as feasible trajectory finder in open loop structure

considering the physical limitations of the control set (maximum steering,

throttle) . Moreover , any point in the free space has geometrical and dynamical

configuration. The use of Rapid Exploring Randomized Tree (RRT) moves the

problem from trying to find optimal path to attempting to get a feasible path that

is good enough as long it satisfies all constraints.

the kinodynamic problem is formulated as follows :

- 𝒞 denotes the configuration space that describes the vehicle in the road

(environment) where 𝑞 ∈ 𝒞 represents the geometrical transformation

applied on vehicle to move from its initial state. Whereas 𝒳 denotes the

state space (car + environment) in which the state 𝑥 ∈ 𝒳 is defined by 𝑥 ∈

(𝑞, �̇�).

- The non-holonomic constraints in 𝒳 are expressed in as �̇� = 𝑓(𝑥, 𝑢)

where 𝑓 defines the system dynamics and 𝑢 ∈ 𝒰 represents the set of

admissible control inputs to our vehicle traveling from initial state 𝑥𝑖𝑛𝑡

toward goal state 𝑥𝑔𝑜𝑎𝑙.

29

- Assuming that a perceiving system is capable to detect and model the road

with obstacles 𝒞𝑜𝑠𝑏𝑡 (collision) present in sensors visibility range, we

consider the neighboring as free collision space 𝒞𝑓𝑟𝑒𝑒 = 𝒞/𝒞𝑜𝑏𝑠𝑡. However

planning in state space 𝒳 is different, 𝒳𝑓𝑟𝑒𝑒 = 𝒳/𝒳𝑟𝑖𝑐 where 𝒳𝑟𝑖𝑐;

known as the region of inevitable collision; defines the region where the

vehicle is in collision with obstacle or in nothing can be done situation. it

means if 𝑞 ∈ 𝒞𝑜𝑏𝑠𝑡 implies that 𝑥 ∈ 𝒳𝑜𝑏𝑠𝑡 since 𝑥 ∈ (𝑞, �̇�) and 𝒳𝑜𝑏𝑠𝑡 is

only a subset of 𝒳𝑟𝑖𝑐 (𝒳𝑜𝑏𝑠𝑡 ⊆ 𝒳𝑟𝑖𝑐). The Figure 4. 1 shows different

configuration and the difference between 𝒳𝑟𝑖𝑐 and 𝒳𝑜𝑏𝑠𝑡 : our car is the

blue one where the red one in the front seen as obstacle. The front car

stopped abruptly and now we can see the change of 𝒳𝑟𝑖𝑐 for different initial

speed profile.

𝑣
0

=
1

0
 𝑘

𝑚
/ℎ

𝑣
0

=
4

5
 𝑘

𝑚
/ℎ

𝑣
0

=
8

0
 𝑘

𝑚
/ℎ

Figure 4. 1: Difference between Free State Space 𝒳𝑓𝑟𝑒𝑒 and Configuration Space 𝒞𝑓𝑟𝑒𝑒.

30

- The solution to this problem is to find a set of input 𝑢(𝜏): [0, 𝑇] ∈ 𝒰 which

results a free collision trajectory sample 𝑥(𝜏): [0, 𝑇] ∈ 𝒳𝑓𝑟𝑒𝑒 in driving the

car from 𝑥𝑖𝑛𝑡 toward goal state 𝑥𝑔𝑜𝑎𝑙 in bounded sample time 𝑇. We will

use Amesim car model as high fidelity motion planner and an iterative

simulation technique will be performed to sample over 𝒳𝑓𝑟𝑒𝑒 .the following

Algorithm describe the proposed Kinodynamic motion planner over

specific scenario:

Algorithm: Kinodynamic Motion planner

Input: 𝑥𝑖𝑛𝑡, 𝑥𝑔𝑜𝑎𝑙, scenario

Output: time parametrized Path { τ , u(τ) , x(τ) }

1: Repeat

2: Define the Map;

3: Locate Obstacles in the Map;

4: Get Initial States of Vehicle;

5: While (forever) do

6: u = Get Control Input (scenario);

7: x(τ) = Simulate Amesim Mode (u, T);

8: If Collision Free(x(τ)) then

9: Break;

10: end If

11:

12: end while

13: Until Scenario is False

Lane change, lane following, overtaking and others are referred in

Kinodynamic Motion planner algorithm as scenarios, for each scenario we have

parametrized logically the control actions {Steer, Brake, Throttle} that should be

taken to perform the task set by the decision making process. A randomized

31

sampling process is used to set numerically the logical control action, for example;

the logical action in overtaking the front car is to steer to the left and the numerical

value that defines how much should I steer is set randomly following a distribution

function 𝑆𝑡𝑒𝑒𝑟𝑙𝑒𝑓𝑡(𝑧) = 𝐹(𝑍 ≤ 𝑧).

Therefore, Rapidly Exploring Random Trees (RRT) is used to handle the

randomized sampling process within Kinodynamic Motion Planner as quick as

possible and uniform structure.

Algorithm: RRT Algorithm

Input: 𝑥𝑖𝑛𝑡

Output: Status

1: 𝑉 ← { 𝑥𝑖𝑛𝑡 } ; 𝐸 ← { ∅ }; 𝐷 ← { ∅ }; 𝑖 = 0;

2: While i < max_iterations do

3: 𝐺 ← { 𝑉, 𝐸 }

4: 𝑥𝑟𝑎𝑛𝑑 ← 𝑅𝑎𝑛𝑑𝑜𝑚_𝑆𝑎𝑚𝑝𝑙𝑒 (𝑉);

5: (𝑉, 𝐸) ← 𝐸𝑥𝑡𝑒𝑛𝑑(𝐺, 𝐷, 𝑥𝑟𝑎𝑛𝑑)

6: If (𝑐ℎ𝑒𝑐𝑘 (𝑉, 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜{𝑔𝑜𝑎𝑙}) == 𝑇𝑟𝑢𝑒) then

7: Status = Success;

8: Break;

9: end if

10: i=i+1

11: end While

As any RRT; a graph 𝐺 is created of nodes denoted 𝑉 (𝑣𝑒𝑟𝑡𝑖𝑐𝑒𝑠) that stores

the final states of the car where the control inputs sequence to travel from initial

node (parent) to current node (child) is stored in the edges 𝐸. 𝐷 denotes the Deleted

nodes set that contains all nodes that are in collision to avoid repetition.

32

 The Extend function enables the tree to grow where each time we select a

random node as parent to branch by applying random actions, we add the resulting

node to 𝑉 and applied actions to 𝐸 if it is in the free collision set. In the case of the

resulting node is in collision, we discard the applied action and we save the node in

delete set. 𝑅𝑎𝑛𝑑𝑜𝑚_𝑆𝑎𝑚𝑝𝑙𝑒 function choose randomly a node from 𝑉 and try to

explore wide range area.

Algorithm: Extend

Input: 𝑉, 𝐸, 𝐷, 𝑥𝑟𝑎𝑛𝑑.

Output: 𝑉, 𝐸.

1: 𝑉′ ← 𝑉; 𝐸′ ← 𝐸; 𝐷′ ← 𝐷

2: 𝑢𝑟𝑎𝑛𝑑 = Get Control Input (scenario);

3: 𝑥𝑛𝑒𝑤 (𝜏) = Simulate Amesim Model (𝑥𝑟𝑎𝑛𝑑, 𝑢𝑟𝑎𝑛𝑑 , T);

4: If collisionFree(𝑥𝑛𝑒𝑤 (𝜏)) and 𝑥𝑛𝑒𝑤 (𝜏) ∉ 𝐷 then

5: 𝑉′ ≔ 𝑉′ ∪ { 𝑥𝑛𝑒𝑤 (𝜏) }

6: 𝐸′ ≔ 𝐸′ ∪ { 𝑢𝑟𝑎𝑛𝑑(𝜏) }

7: else

8: 𝐷′ ≔ 𝐷′ ∪ { 𝑥𝑛𝑒𝑤 (𝜏) }

9: end if

10: Return 𝐺′ = (𝑉′, 𝐸′)

For lane change scenario in Figure 4. 2; we define two regions current lane

region (in green) and target lane region (red) and depending on the vehicle position

the control actions and their occurrence probabilities are defined by logical

preference (see Table 4. 1).

33

Table 4. 1: Simple driving rules in lane change

 Current lane (green) Target lane (red)
S

te
e
r
in

g

Hard_Left 0.3 0

Left 0.5 0

Straight 0.2 0.2

Right 0 0.4

Hard_Right 0 0.4

A
c
c
e
le

r
a
ti

o
n

Throttle 0.2 0.3

No Action 0.5 0.5

Brake 0.3 0.2

One action is taken at the time from steering set and another action from

acceleration set 𝑈 = { Steering, Acceleration } thus we define two random

variable 𝑃𝑠 for Steering and 𝑃𝑎 for acceleration. If 𝑃𝑠 = 0.6 and 𝑃𝑎 = 0.9 means

that Left with Brake are chosen as control actions. Now, in same way and as

discussed above; a numerical value for the selected control actions is set randomly

following a uniform distribution function between the maximum and minimum

value of each action. Note that No Action refer to no input acceleration.

Target lane

Current lane

Figure 4. 2: Lane change rules regions.

34

 Figure 4. 3 describes the general structure of path planner like-driver with

Amesim Car.

- Motion planner block contains: the scenario map and rules of specific

scenario.

- Amesim Car block: describes the high fidelity model of the car that

includes the dynamics and tire model.

Motion Planner

Amesim Car

Steering

Throttle, Brake

States

Figure 4. 3: Motion planner Block diagram.

35

Chapter 5

Trajectory Control

So far we, the path planner enable the vehicle to find a feasible path with high

precision following a sequence of control inputs. However, driving the car in open

loop structure will not be sufficient to track a full path which will introduce an

accumulative error that drives the car from the reference trajectory. Also, the open

loop form is too weak against the different disturbances and external forces (strong

wind, sliding surface,…). In order to track successfully the resulting trajectory and

ensure the stability of the vehicle, a robust trajectory controller is required.

Model Predictive Controllers (MPC), over literature, have been effectively

employed in different applications (UAV, ADAS, …) for their ability to handle

systems’ dynamics and kinematics constraints, predicate the behavior of the system

over a time horizon and optimize the problem to find the best feasible control

combination . In autonomous driving, MPC has been widely used such as in Falcone

[18]; where the author has compared between the use of the Linear and nonlinear

MPC in terms of computational time in double lane change application, the

nonlinear MPC depends on the speed profile of the vehicle and very computationally

expensive compared to the linear MPC. Nevertheless, the linear MPC uses a

linearized model which is not accurate compared to nonlinear MPC model. It is

always tradeoff between accuracy and time complexity.

Due to the technological advancement of embedded computers, we prioritize

the accuracy over the time complexity in designing trajectory controller, thus a

nonlinear model predictive controller (NMPC) based on the bicycle model is

implemented in the next section.

36

5.1 MPC problem Formulation

Model predictive controller is an optimal control approach formulated as

optimization problem which involves a prediction model, objective function and

constraints. Usually, MPC is carried out with a receding horizon from time (𝑡𝑘) to

a defined time (𝑡𝑛) (horizon time) where 𝑁 future output signals are predicted.

The objective function 𝒥 is built based on the predicted states 𝑥(𝑡𝑘), 𝑥(𝑡𝑘 +

𝑇𝑠), … , 𝑥(𝑡𝑛) and control signals 𝑢(𝑡𝑘), 𝑢(𝑡𝑘 + 𝑇𝑠), … , 𝑢(𝑡𝑛) (sample time 𝑇𝑠 =
𝑡𝑛

𝑁

) and optimized with respect these control signals subjected to constraints; The

optimized control signals are inputs to the systems. Each sample time, we repeat the

same process.

The dynamic model used in our MPC is the bicycle described in chapter 3:

 𝑑𝑥(𝑡)

𝑑𝑡
 = 𝑓(𝑥 (𝑡) , 𝑢(𝑡)) (5.1)

 𝑥(𝑡0) = 𝑥0 (5.2)

 𝑦(𝑡) = ℎ(𝑥 (𝑡) , 𝑢(𝑡)) (5.3)

where 𝑥 ∈ ℝ𝑛 is the state, 𝑢 ∈ ℝ𝑚 is the input, 𝑦 ∈ ℝ𝑝 𝑡 is the time and 𝑥0

are the initial conditions. The functions 𝑓 and ℎ denotes state and output equations

respectively. Now, for trajectory tracking application, we define the tracking error

as follows:

 𝑒(𝑡) = 𝑦𝑟𝑒𝑓(𝑡) − 𝑦(𝑡) (5.4)

For nonlinear model predictive controller (NMPC), both constraints and

objective function are defined nonlinear functions and nonlinear program (NLP) is

used to solve the problem, then the NMPC optimal control problem is formulated

for a given current state 𝑥𝑘 as follows:

37

 min
𝑢(𝑡)

∫ 𝒥(𝑢(𝑡), 𝑥(𝑡))
𝑡𝑛=𝑡+𝑁 𝑇𝑠

𝑡𝑘
 𝑑𝑡 + 𝒥𝑓(𝑢(𝑡𝑛), 𝑥(𝑡𝑛)) (5.5)

 Subject to 𝑑𝑥(𝑡)

𝑑𝑡
 = 𝑓(𝑥 (𝑡) , 𝑢(𝑡)) (5.6)

 𝑦(𝑡) = ℎ(𝑥 (𝑡) , 𝑢(𝑡)) (5.7)

 𝑥(𝑡𝑘) = 𝑥𝑘 (5.8)

 𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥 (5.9)

 Other constraints

In order to be able to solve the optimal control problem numerically, a

transformation is required to obtain a finite dimensional optimization problem. We

define two approaches (1) Single shooting and (2) multiple shooting where the later

split the horizon into subintervals and parametrizes the state and control trajectories

to be included in optimization problem. This numerical property and implementation

issue enable the MPC to handle perfectly uncertain and highly nonlinear systems

[26]. Thus the finite dimensional optimization problem can be rewritten as follows :

 min
𝑞𝑘 ,…𝑞𝑘+𝑁−1

∑ 𝒥𝑖,𝑑(𝑞𝑖, 𝑥𝑖)𝑘+𝑁−1
𝑖=𝑘 + 𝒥𝑓,𝑑(𝑞𝑘+𝑁, 𝑥𝑘+𝑁) (5.10)

 Subject to

𝑑𝑥(𝑡)

𝑑𝑡
 = 𝑓(𝑥 (𝑡) , 𝑢(𝑡)) (5.11)

 𝑦(𝑡) = ℎ(𝑥 (𝑡) , 𝑢(𝑡)) (5.12)

 𝑥(𝑡𝑘) = 𝑥𝑘 (5.13)

 𝑢𝑚𝑖𝑛 ≤ 𝑢(𝑡) ≤ 𝑢𝑚𝑎𝑥 (5.14)

𝑢(𝑡) = 𝑞𝑖 multiple shooting transformation

From 𝑡 ∈ < 𝑡𝑘 , … , 𝑡𝑁 > to 𝑖 ∈ < 𝑘, … , 𝑘 + 𝑁 − 1 >
(5.15)

 Other constraints

38

Now the cost function is expressed as the sum of functions 𝒥𝑖,𝑑 and terminal

function 𝒥𝑓,𝑑 which are based on discrete samples of state and input trajectories.

Similarly, the constraints are considered at sampling time instants. There are several

methods that can be used to solve the above optimization problem Interior point (IP)

methods and Sequential Quadratic Programming SQP. Frequently, SQP method is

used in solving NMPC optimization problem.

5.2 SQP

Is an iterative method aiming to find optimum solution to nonlinear

constrained problem, Consider the nonlinear optimization problem:

 min
𝒛

𝑭(𝒛) (5.16)

 Subject to 𝑪𝑬(𝒛) = 𝟎 (5.17)

 𝑪𝑰(𝒛) ≤ 𝟎 (5.18)

With 𝑭 being the objective function, 𝒛 vector of optimization variables, 𝑪𝑬

and 𝑪𝑰 are the equality and inequality constraints functions respectively. The idea of

Sequential Quadratic Programming (SQP) is to search for local minima by the

following advancing approach:

 𝒛(𝒊+𝟏) = 𝒛𝒊 + 𝜶(𝒊) 𝒑(𝒊) (5.19)

 Until it converges to some stopping criterion. 𝜶(𝒊) is the step length and 𝒑(𝒊)

is the optimizer variable or solution step to the local Quadratic Problem (QP). the

nonlinear objective function is approximated locally by its quadratic approximation

form with linearized constraints. In each iteration, the local QP is recalculated for

current 𝒛 then the local QP can be rewritten as follows:

39

 min
𝒑

𝑭(𝒑) ≅ 𝑭(𝒛) + 𝛁𝑭𝑻(𝒛) 𝒑 +
1

2
 𝒑𝑻 𝛁𝟐𝑭(𝒛) 𝒑 (5.20)

 Subject to 𝛁𝑪𝐸
𝑻(𝒛) 𝒑 + 𝑪𝐸(𝒛) = 0 (5.21)

 𝛁𝑪𝐼
𝑻(𝒛) 𝒑 + 𝑪𝐼(𝒛) ≤ 0 (5.22)

 The following algorithm summarizes the SQP approach:

Algorithm: SQP

Input: 𝑭, 𝑪𝑬, 𝑪𝑰, initial guess.

Output: 𝒛(𝑖)

1: Repeat

2: Local QP 𝑭(𝒛) → 𝑭(𝒑) for 𝒛(𝑖)

3: Linearize { 𝑪𝐸 , 𝑪𝐼 } for 𝒛(𝑖)

4: Evaluate min
𝒑

 𝑭(𝒑(𝑖))

5: Select 𝜶(𝒊)

6:
𝒛(𝒊+𝟏) = 𝒛𝒊 + 𝜶(𝒊) 𝒑(𝒊)

7:
𝑖 = 𝑖 + 1

8: Until : stopping criterion met

Among the different objective functions terms used in NMPC, we are

interested in the additive quadratic form based on penalty least square. this form is

straightforward and very efficient in reference trajectory tracking described in (5.4):

𝒥 = ∑ (𝑥𝑟𝑒𝑓,𝑖 − 𝑥𝑖)
𝑇

𝑸𝒊(𝑥𝑟𝑒𝑓,𝑖 − 𝑥𝑖) + 𝑢𝑖
𝑇𝑹𝒊 𝑢𝑖

𝑘+𝑁−1
𝑖=𝑘 + (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁)

𝑇
𝑸𝑵 (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁) (5.23)

40

 Equation 5.23, Can be re-written in the block diagonal form as follows:

𝒥 = (𝑥𝑟𝑒𝑓 − 𝑥)
𝑇

𝑸 (𝑥𝑟𝑒𝑓 − 𝑥) + 𝑢𝑇𝑹 𝑢 + (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁)
𝑇

𝑸𝑵 (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁) (5.24)

Where the 𝑸 is trajectory diagonal penalty (weighting) matrix consist of

positive semidefinite matrices 𝑸𝒊 of dimension (n), also 𝑹 is control diagonal penalty

matrix consisting of blocks of 𝑹𝒊 of dimension (m).

The kinodynamic path planner provides us with time parametrized path

𝑥𝑟𝑒𝑓 = (𝑈𝑥 𝑈𝑦 𝑟 𝜓 𝑥 𝑦) and the corresponding control inputs 𝑢𝑟𝑒𝑓 =

(𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 𝑏𝑟𝑎𝑘𝑒). From equation 𝒥, our design take only 𝑥𝑟𝑒𝑓 as

tracking reference and try to find the new optimized control input 𝑢 = (𝛿 𝑎) to the

vehicle under some control penalties, then NMPC is described as follows:

min
𝑥,𝑢

𝒥 = (𝑥𝑟𝑒𝑓 − 𝑥)
𝑇

𝑸 (𝑥𝑟𝑒𝑓 − 𝑥) + 𝑢𝑇𝑹 𝑢 + (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁)
𝑇

𝑸𝑵 (𝑥𝑟𝑒𝑓,𝑁 − 𝑥𝑁) (5.25)

 Subject to 𝑥𝑘+1 = 𝑓(𝑥𝑘 , 𝑢𝑘) (5.26)

 𝑢𝑘 ← {
𝛿𝑚𝑖𝑛 ≤ 𝛿 ≤ 𝛿𝑚𝑎𝑥

𝑎𝑚𝑖𝑛 ≤ 𝑎 ≤ 𝑎𝑚𝑎𝑥
} (5.27)

 𝑥(0) = 𝑥0 (5.28)

The NMPC described above have been implemented in Matlab using ACADO

Toolkit interface that contains a collection of dynamic optimization algorithms [27].

C code will be automatically generated to be used in Simulink or Embedded system

in the future work.

We distinguish three different possible Trajectory control structures:

 Open loop control:

41

Figure 4. 4: Open Loop Control.

 Feedback Trajectory Control:

Figure 4. 5: NMPC feedback Trajectory Controller

 Feedback + Feedforward Trajectory Control:

Figure 4. 6: Combined Trajectory Control.

42

Chapter 6

Simulation Result

6.1 Double lane change scenario

The severe double lane-change maneuver is a dynamic process consisting of

rapidly driving a vehicle from its initial lane to another lane parallel and returning

back to the initial lane while avoiding a defined obstacle and without exceeding

lane boundaries. The double lane change scenario ISO 3888-1 was used to evaluate

the effectiveness of planner and proposed control schemes. The ISO 3888-1 track

dimensions are mentioned on Table 6. 1 as shown in Figure 6. 1:

Figure 6. 1: ISO 3888-1 Track for double lane change test.

43

Table 6. 1: ISO 3888-1 Track Dimensions

6.2 RRT Motion planner in Double lane Change

In his section, we have explored the ISO 3888-1 track using our motion

planner like driver in two different driving parametrization :

- Case 1: Only steering command and no Throttle or Brake actions. Then the

path planner explores the environment using control set defined as

𝑢: { 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 } and initial velocity at the starting point.

- Case 2: full command set 𝑢: { 𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔, 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒, 𝑏𝑟𝑎𝑘𝑒 }. The idea here is

to explore the environment with specific constant speed profiles. Simple PI

controller is used within path planner to regulate the speed at specific speed

when it is needed.

We define 7 different regions for the whole track as follows:

- 1 : STARTING.

- 2 : TURN LEFT.

- 3 : BACK STEERING RIGHT.

- 4 : TURN RIGHT.

- 5 : BACK STEERING LEFT.

- 6 : STRAIGHT.

- 7 : FINISH.

44

Figure 6. 2 Double lane change regions parametrizations.

a. Case 1:

Considering that the car is having initial velocity 𝑈 = 80 𝑘𝑚/ℎ, the path

planner is executed to perform the double lane change with only steering command.

to do so, we have parametrized the steering actions for each region as follows:

Table 6. 2: Double lane change with steering parametrization only.

Regions

1 2 3 4 5 6 7

S
te

e
r
in

g

Hard_Left
0

0.3 0

Left 0.6 0.1 0 0.5

0.3 Straight 1 0.1 0.4 0.1 0.4

Right
0

0.5 0.6 0.1

Hard_Right 0 0.3 0

A
c
c
e
le

r
a

ti
o

n

Throttle 0

No Action 1

Brake 0

45

The path planner successfully explored the track and reached the finish region

with steering control action. The RRT exploration tree (in blue) is shown in

Figure 6. 3

Figure 6. 3: RRT motion planner exploration with steering action only.

The green nodes in figure are the waypoints of the resulting trajectory,

between each waypoint we apply new control set that takes the car to the next

waypoint. At the end, the resulting trajectory is a sum of sub trajectories where

in Figure 6. 4 are represented with different colors.

Figure 6. 4: Feasible trajectory with steering only.

To elaborate more the success of the planning, we draw the Vehicle positions

in the resulting trajectory (Figure 6. 5). Clearly the car is not in collision with

road borders.

46

Figure 6. 5: Car position during the planning with steering only .

 The control sequence applied to enable the car to reach the finish region is

shown in Figure 6. 6, where no brake or throttle commands were used.

Figure 6. 6: Planner control actions during the planning.

b. Case 2:

In the same tack and for the same scenario, we executed our motion planner

again to explore with possibility of acceleration or decelerating toward the finish

region, Brake and Throttle appearance are configured as shown in the following

Table 6. 3:

47

Table 6. 3: Double lane change with steering and acceleration rules.

Regions

1 2 3 4 5 6 7

S
te

e
r
in

g

Hard_Left
0

0.3 0

Left 0.6 0.1 0 0.5

0.3 Straight 1 0.1 0.4 0.1 0.4

Right
0

0.5 0.6 0.1

Hard_Right 0 0.3 0

A
c
c
e
le

r
a
ti

o
n

Throttle 0.25 0.2 0.3 0.4

No Action 0.50 0.6 0.6 0.5

Brake 0.25 0.2 0.1

The motion planner successfully reaches the finish region with connected

trajectory using complete set of control inputs which increases the number of

possible combinations then the resulting tree is bigger than the previous one:

Figure 6. 7: Motion planner exploration.

The resulting connected trajectory and the vehicle evolution in the free state

space are shown in Figure 6. 8 and Figure 6. 9:

48

Figure 6. 8: Resulting feasible trajectory.

Figure 6. 9: Car locations during the planning.

The input command combination Steering, Throttle and Brake used by the

planner are shown Figure 6. 10 .

49

Figure 6. 10: Planner control actions during the planning.

Clearly, it can be seen that only brake command was used to reduce the speed.

Most of the acceleration attempts make the car in collision with road borders.

6.3 Nonlinear Model Predictive Controller (NMPC)

In this section, we are going to discuss the performance of the designed

NMPC for track trajectory purpose. we have used two different trajectories

generated by Amesim In Circuit Nevers Magny Track in Bourgogne - France

(Figure 6. 11):

- Constant Speed Trajectory.

- Variable Speed Trajectory.

Figure 6. 11: Circuit Nevers Magny Track

50

a. Constant Speed Trajectory:

The velocity of the car is maintained constant 𝑈 = 10 𝑚/𝑠 in the whole track

staring from an initial position (𝜓 = −93 𝑑𝑒𝑔, 𝑥 = 29 𝑚 𝑦 = 162.5 𝑚),

the horizon length N = 40 with sampling time 𝑇𝑠 = 0.001 𝑠, the weighting

coefficients are set to be:

 The NMPC tracks perfectly the reference trajectory where small drift

about 20 cm appears in hard turns. The reference and result trajectories are plotted

in Figure 6. 12.

States

Penalties

𝑞𝑈𝑥
 𝑞𝑈𝑦

 𝑞𝑟 𝑞𝜓 𝑞𝑥 𝑞𝑦 Control

Penalties

𝑟𝛿 𝑟𝑎

0.9 0

0.5

10

1

1

0.05

0.01

51

Figure 6. 12: Constant speed positon tracking.

 The controller also maintains the speed of the car at 10 m/s in most of

the time by accelerating using throttle and decelerating using brakes.

Figure 6. 13: (a) Constant speed Tracking, (b) Throttle & Brake optimal control inputs.

 The main challenges is to follow a trajectory orientations the Yaw (𝜓)

and the Yaw rate (r) to avoid large drifting in hard turns. we would like also to

avoid oscillations in control inputs especially in the steering which is undesirable in

driving behavior. Therefore, we have tuned our NMPC to compromise between the

two objectives (1) small error and (2) no oscillations in control signals.

52

Figure 6. 14: (a) Orientation tracking with (b) optimal steering command.

b. Variable Speed Trajectory:

Now, the controller tracks the same trajectory with variable speed ranges from (

10 m/s to 30 m/s). The initial speed of the car is set to be 30 m/s and we start again

from the same initial position (𝜓 = −93 𝑑𝑒𝑔, 𝑥 = 29 𝑚 𝑦 = 162.5 𝑚)

without changing the weighting coefficients and MPC Horizon length:

 The NMPC shows a good performance in tracking trajectory where slightly

larger drift about (40 cm) appears in hard turns especially in higher speed profiles.

States

Penalties

𝑞𝑈𝑥
 𝑞𝑈𝑦

 𝑞𝑟 𝑞𝜓 𝑞𝑥 𝑞𝑦 Control

Penalties

𝑟𝛿 𝑟𝑎

0.9 0

0.5

10

1

1

0.05

0.01

53

Figure 6. 15: Variable speed positon tracking.

 The controller perfectly trackers the desired speed and orientation by finding

the optimal control inputs Steering Angle, Brake and Throttle as shown in Figure 6.

17:

54

Figure 6. 16: (a) Variable speed and (b) Orientation Tracking.

Figure 6. 17: Optimal control Inputs (a) Steering (b) Brake & Throttle.

55

 Our NMPC is developed using the complete model that includes the dynamics

of the car and tire forces that allow the vehicle to slip while tracking reference

trajectory. The pervious reference trajectory is good reference to test the

performance of the controller in slippery track, the evolution of the tire forces and

slip angles of the front and rear wheels are shown in Figure 6. 18:

Figure 6. 18: (a) Lateral tire forces and (b) Slip angles of front and rear wheels.

6.4 Double lane change control schemes

For double lane change application, control trajectory design is quite

challenging since we would like to meet the following criterion:

- Safe double lane change with very small error in position and orientation (

free Collision).

- No oscillation in control inputs (mainly steering)

- Very small time delay and tracks the speed very well.

To achieve these requirement we will present different control approaches:

56

6.4.1. Open Loop Controller

Since the resulting trajectory is achieved by applying random combination of

control inputs in small time durations, it can be also straightforward to use an open

loop control structure to execute the time parametrized path as described in Figure 4.

4: Open Loop Control.Figure 4. 4.

The Figure 6. 19, Figure 6. 20 shows that applying the control inputs in open

loop structure will give bad results and the car is not following the reference

trajectory at all since the error is accumulating during the execution between each

two sub paths.

Figure 6. 19: Open loop control (a) resulting trajectory (b) car in collision.

57

Figure 6. 20: Open loop orientation deviation.

 Besides to that, the car is an uncertain systems that suffers from its

internal parameter variations as tire model, suspension system… and external

disturbances (wind, slippery road ….). Therefore, the open loop structure is

replaced by feedback structure

6.4.2. Feedback Controller

For safety requirement, we will use our NMPC with two different tunings

coefficients and we compare the performance of the two:

In NMPC (1) there is no difference between the longitudinal and lateral

quantities 𝑞𝑥 = 𝑞𝑦 and higher control penalty on the steering to avoid the steering

oscillation . in the other hand in NMPC (2), our main concern is to avoid collision

with road borders therefore we have increased the weighting coefficient of lateral

component and orientation, and we have also reduced the penalty on the steering.

58

N
M

P
C

(1
)

N
M

P
C

(2
)

Figure 6. 21: Resulting paths of both MPC s.

 In Figure 6. 21 ,The NMPC (2) tracks better the trajectory since the

objective function is very sensitive to the lateral and orientation errors. As

consequence, In NMPC (2) the car avoid to hit the right borders of road in retuning

back to the ego line while in NMPC (1) the car is in collision as shown in zoom

Figure 6. 23.

S
ta

te
s

P
en

al
ti

es
 𝑞𝑈𝑥

𝑞𝑈𝑦
 𝑞𝑟 𝑞𝜓 𝑞𝑥 𝑞𝑦

C
o
n
tr

o
l

P
en

al
ti

es
 𝑟𝛿 𝑟𝑎

NMPC (1)

0.9

0

0.5

10

1.2

1.2

0.085

 0.04

 NMPC (2) 20

1

1.5

0.065

59

N
M

P
C

(1
)

N

M
P

C
(2

)

Figure 6. 22: Car locations during the tracking.

 In the NMPC (2) introduces small delay compared to NMPC (1), the

cars of the resulting and reference trajectories almost overlapped in Figure 6. 22,

whereas; the larger delay is introduced in NMPC (1).

N
M

P
C

(1
)

60

N
M

P
C

(2
)

Figure 6. 23: (a) Collision (b) No Collision.

Slightly difference between the two NMPC s in tracking the velocity and

orientation references as shown in Figure 6. 24, Figure 6. 25.

N
M

P
C

(1
)

N
M

P
C

(2
)

Figure 6. 24: Speed Tracking of both NMPC configurations.

N
M

P
C

(1
)

61

N
M

P
C

(2
)

Figure 6. 25: Orientation Tracking of both NMPC configurations.

The NMPC(1) introduces small oscillations at the starter compared to NMPC

(2) after that it goes fine for both of them. The throttle and brake control signals

for both NMPCs are almost the same.

N
M

P
C

(1
)

N
M

P
C

(2
)

Figure 6. 26: Steering Command of both NMPC configurations.

62

N
M

P
C

(1
)

N

M
P

C
(2

)

Figure 6. 27: Throttle & Brake Commands of both NMPC configurations.

6.4.3. Feedforward + Feedback Controller

In this section, we use the control sequence from the path planner as feedforward

control inputs as driver and NMPC will play the role of the correction block to keep

the car in the reference trajectory.

The performance is acceptable at some level, however still need to be enhanced

and develop coordination mechanism to have a better control inputs unlike in Figure

6. 30. A delay is introduced in controller as shown in Figure 6. 28 which is totally

undesirable.

63

Figure 6. 28: Feedforward + NMPC tracking performance.

Figure 6. 29: Speed & Orientation tracking performance.

A very bad steering and acceleration control signals that influence the comfort

of the vehicle.

64

Figure 6. 30: Combined (a) Steering ,(b) Throttle and Brake of NMPC and Feedforwrd.

65

Conclusion

In this thesis, we have addressed the safety problem in self-driving cars from

the planning and control levels individually and combined in double lane change

scenario.

Due to the technological advancement, we are now able to integrate a more

complex models as (Amesim or Tire model) in developing planning algorithms or

designing trajectory controllers. In our Path planner; we have parametrized simple

kinodynamic RRT to mimic the human driving action to ensure the execution of path

and drive safely, moreover; our path planner like driver combines between the path

planning and trajectory generation tasks. For instance this path planner is

parametrized for lane change and double lane change scenarios which are common

driving behaviors.

In addition to path planning, a trajectory controller was developed to follow

the generated path and correct the tracking error during the execution. The developed

NMPC tracks perfectly the generated path in double lane change as well in slippery

tracks. Feedforward + NMPC is a promising structure that takes the advantage of

available control signals from the planner and allow the MPC to compensate the

errors. The effectiveness of planner and control approach are simulated with high

fidelity model.

The planner with high fidelity model is going to be used as trainer to generate

safe trajectories for critical situations. Improvements can be done in (1)

Feedforward + NMPC control approach (2) path planning (online, optimal

trajectories which is very challenging and experimentally tested.

66

Bibliography

[1] "Stanford Univesity," [Online]. Available:

http://www.formal.stanford.edu/jmc/progress/cars/cars.html.

[2] Ernst Dieter Dickmanns Volker Graefe, "Dynamic monocular machine vision," Machine vision and

applications, vol. 1, p. 223–240, 1988.

[3] Ernst D Dickmanns, "“Vehicles capable of dynamic vision," IJCAI , p. 1577–1592, 1997.

[4] D. Pomerleau, "Rapidly Adapting Artificial Neural Networks for Autonomous Navigation," in

Advances in Neural Information Processing Systems 3, Morgan-Kaufmann, 1991, pp. 429--435.

[5] Martin Buehler, Karl Iagnemma, Sanjiv Singh, "The DARPA Urban Challenge: Autonomous Vehicles

in City Traffic," Springer-Verlag Berlin Heidelberg, 2009.

[6] "Waymo," 2009. [Online]. Available: https://www.google.com/selfdrivingcar/). .

[7] Jonathan Bohren , "Little Ben: The Ben Franklin Racing Team's entry in the 2007 DARPA Urban

Challenge," J. Field Robot, vol. 25, p. 598–614, 2008.

[8] Julius Ziegler, Moritz Werling, Joachim Schröder, "Navigating car-like Robots in unstructured

Environments using an Obstacle sensitive Cost Function," in IEEE Intelligent Vehicles Symposium,

Eindhoven, The Netherlands, 2008.

[9] M. Montemerlo, "Junior: The Stanford Entry in the Urban Challenge," in Journal of Field Robotics,

Wiley, 2008.

[10] Sertac Karaman, Emilio Frazzoli, "Sampling-based Algorithms for Optimal Motion Planning," CoRR,

pp. 1105-1186, 011.

[11] Lydia E. Kavraki, Jean-Claude Latombe, Mark H. Overmars, "Probabilistic roadmaps for path

planning in high-dimensional configuration spaces," IEEE Transactions on Robotics and

Automation, vol. 12, no. 4, p. 566–580, 1996.

[12] Steven M. LaValle, James J. Kuffner, "Randomized Kinodynamic Planning," The International

Journal of Robotics Research, 2001.

[13] Yoshiaki Kuwata, Justin Teo, Gaston Fiore , "Real-Time Motion Planning With Applications to

Autonomous Urban Driving," IEEE Transactions on Control Systems Technology, vol. 17, no. 5, pp.

1105-1118, 2009.

67

[14] Sertac Karaman ; Emilio Frazzoli, "Optimal kinodynamic motion planning using incremental

sampling-based methods," in 49th IEEE Conference on Decision and Control (CDC), Atlanta, GA,

USA, 2010.

[15] JosÉ E. Naranjo, Carlos Gonzalez, Ricardo Garcia, "Lane-Change Fuzzy Control in Autonomous

Vehicles for the Overtaking Maneuver," IEEE Transactions on Intelligent Transportation Systems,

vol. 9, no. 3, pp. 438 - 450, 2008.

[16] Alessandro De Luca, Giuseppe Oriolo, "Feedback control of a nonholonomic car-like robot," in

Robot Motion Planning and Control, Springer, 1998, pp. 171-253.

[17] E. Kim , J. Kim, "Model predictive control strategy for smooth path tracking of autonomous

vehicles with steering actuator dynamics," International Journal of Automotive Technology, vol. 15,

no. 7, pp. 1155-1164, 2014.

[18] Paolo Falcone, Francesco Borrelli, Jahan Asgari, "Predictive Active Steering Control for

Autonomous Vehicle Systems," IEEE Transactions on Control Systems Technology , vol. 15, no. 3,

pp. 566 - 580, 2007.

[19] Wilko Schwarting, Javier Alonso-Mora, Liam Paull, Sertac Karaman, Daniela Rus, "Safe Nonlinear

Trajectory Generation for Parallel Autonomy With a Dynamic Vehicle Model," IEEE Transactions on

Intelligent Transportation Systems , vol. PP, no. 99, pp. 1-15, 2017.

[20] P. Falcone, F. Borrelli, H. E. Tseng, J. Asgari, and D. Hrovat, "Linear time-varying model predictive

control and its application to active steering systems: Stability analysis and experimental

validation," International journal of robust and nonlinear control, vol. 18, no. 8, 2007.

[21] Nitin R. Kapania, J. Christian Gerdes, "Design of a feedback-feedforward steering controller for

accurate path tracking and stability at the limits of handling," International Journal of Vehicle

Mechanics and Mobility, vol. 53, no. 12, pp. 1744-5159 , 2015.

[22] "Siemens Industry Software," [Online]. Available:

https://www.plm.automation.siemens.com/en/products/lms/imagine-. [Accessed 2018].

[23] F. Borrelli , P. Falcone , T. Keviczky , J. Asgari , D. Hrovat, "MPC-Based Approach to Active Steering

for Autonomous Vehicle Systems," International Journal of Vehicle Autonomous Systems , vol. 3,

no. 2-4, 2005.

[24] Bakker, E., Nyborg, L., Pacejka, H. B, " Tyre modeling for use in vehicle," 1987.

[25] R. Rajamani, Vehicle Dynamics and Control, Springer, 2012.

[26] O. Mikulá, "A Framework for Nonlinear Model Predictive Control," Czech Technical University in

Prague, 2016.

[27] "ACADO Toolkit," [Online]. Available: http://acado.github.io/matlab_overview.html. [Accessed

20018].

68

